Combination checkpoint blockade with anti-PD-1 and anti-CTLA-4 antibodies has shown promising efficacy in melanoma. However, the underlying mechanism in humans remains unclear. Here, we perform paired single-cell RNA and T cell receptor (TCR) sequencing across time in 36 patients with stage IV melanoma treated with anti-PD-1, anti-CTLA-4, or combination therapy.
View Article and Find Full Text PDFImmunotherapies have shown great promise in pleural mesothelioma (PM), yet most patients still do not achieve significant clinical response, highlighting the importance of improving the understanding of the tumor microenvironment (TME). Here, we utilized high-throughput, single-cell RNA sequencing (scRNA-seq) to de novo identify 54 expression programs and construct a comprehensive cellular catalog of the PM TME. We found four cancer-intrinsic programs associated with poor disease outcome and a novel fetal-like, endothelial cell population that likely responds to VEGF signaling and promotes angiogenesis.
View Article and Find Full Text PDFIn metastatic urothelial cancer (mUC), cisplatin versus carboplatin leads to durable disease control in a subset of patients. The IMvigor130 trial reveals more favorable effects with atezolizumab combined with gemcitabine and cisplatin (GemCis) versus gemcitabine and carboplatin (GemCarbo). This study investigates the immunomodulatory effects of cisplatin as a potential explanation for these observations.
View Article and Find Full Text PDFBackground: RNA profiling technologies at single-cell resolutions, including single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, scnRNA-seq for short), can help characterize the composition of tissues and reveal cells that influence key functions in both healthy and disease tissues. However, the use of these technologies is operationally challenging because of high costs and stringent sample-collection requirements. Computational deconvolution methods that infer the composition of bulk-profiled samples using scnRNA-seq-characterized cell types can broaden scnRNA-seq applications, but their effectiveness remains controversial.
View Article and Find Full Text PDFImmune checkpoint blockers (ICBs) have failed in all phase III glioblastoma (GBM) trials. Here, we show that regulatory T (Treg) cells play a key role in GBM resistance to ICBs in experimental gliomas. Targeting glucocorticoid-induced TNFR-related receptor (GITR) in Treg cells using an agonistic antibody (αGITR) promotes CD4 Treg cell differentiation into CD4 effector T cells, alleviates Treg cell-mediated suppression of anti-tumor immune response, and induces potent anti-tumor effector cells in GBM.
View Article and Find Full Text PDFThe interactions between antibodies, SARS-CoV-2 and immune cells contribute to the pathogenesis of COVID-19 and protective immunity. To understand the differences between antibody responses in mild versus severe cases of COVID-19, we analyzed the B cell responses in patients 1.5 months post SARS-CoV-2 infection.
View Article and Find Full Text PDFCD4 effector lymphocytes (T) are traditionally classified by the cytokines they produce. To determine the states that T cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic T cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (T) subsets.
View Article and Find Full Text PDFThe interactions between antibodies, SARS-CoV-2 and immune cells contribute to the pathogenesis of COVID-19 and protective immunity. To understand the differences between antibody responses in mild severe cases of COVID-19, we analyzed the B cell responses in patients 1.5 months post SARS-CoV-2 infection.
View Article and Find Full Text PDFCurr Opin Immunol
April 2020
Single-cell transcriptomics (scRNAseq) holds the promise to generate definitive atlases of cell types. We review scRNAseq studies of conventional CD4 αβ T cells performed in a variety of challenged contexts (infection, tumor, allergy) that aimed to parse the complexity and representativity of previously defined CD4 T cell types, lineages, and cosmologies. With a few years' experience, the field has realized the difficulties and pitfalls of scRNAseq.
View Article and Find Full Text PDFFoxP3 T regulatory (Treg) cells are central elements of immunologic tolerance. They are abundant in many tumors, where they restrict potentially favorable antitumor responses. We used a three-pronged strategy to identify genes related to the presence and function of Tregs in the tumor microenvironment.
View Article and Find Full Text PDFIn the version of this article initially published, the Supplementary Note was missing. The Supplementary Note has now been provided online and is cited in the Methods section of the article. The error has been corrected in the HTML and PDF version of the article.
View Article and Find Full Text PDFCD4 T regulatory cells (T) are central to immune homeostasis, their phenotypic heterogeneity reflecting the diverse environments and target cells that they regulate. To understand this heterogeneity, we combined single-cell RNA-seq, activation reporter and T cell receptor (TCR) analysis to profile thousands of T or conventional CD4FoxP3 T cells (T) from mouse lymphoid organs and human blood. T and T pools showed areas of overlap, as resting 'furtive' T with overall similarity to T or as a convergence of activated states.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2015
Familial breast and ovarian cancer are often caused by inherited mutations of BRCA1. While current prognoses for such patients are rather poor, inhibition of poly-ADP ribose polymerase 1 (PARP1) induces synthetic lethality in cells that are defective in homologous recombination. BMN 673 is a potent PARP1 inhibitor that is being clinically evaluated for treatment of BRCA-mutant cancers.
View Article and Find Full Text PDFSynthetic small interfering RNAs (siRNAs) are an indispensable tool to investigate gene function in eukaryotic cells and may be used for therapeutic purposes to knock down genes implicated in disease. Thus far, most synthetic siRNAs have been produced by chemical synthesis. Here we present a method to produce highly potent siRNAs in Escherichia coli.
View Article and Find Full Text PDFThe GenomeRNAi database (http://www.genomernai.org/) contains phenotypes from published cell-based RNA interference (RNAi) screens in Drosophila and Homo sapiens.
View Article and Find Full Text PDF