Dendrimers are highly symmetric, hyperbranched macromolecules consisting of repeating structural units [...
View Article and Find Full Text PDFDNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic.
View Article and Find Full Text PDFGlioblastoma is a rapidly progressing tumor quite resistant to conventional treatment. These features are currently assigned to a self-sustaining population of glioblastoma stem cells. Anti-tumor stem cell therapy calls for a new means of treatment.
View Article and Find Full Text PDFTumor cells with stem cell properties are considered to play major roles in promoting the development and malignant behavior of aggressive cancers. Therapeutic strategies that efficiently eradicate such tumor stem cells are of highest clinical need. Herein, we performed the validation of the polycationic phosphorus dendrimer-based approach for small interfering RNAs delivery in in vitro stem-like cells as models.
View Article and Find Full Text PDFDendritic molecules bearing metal complexes in their structure (metallodendrimers and metallodendrons) are considered prospective therapeutic entities. In particular, metallodendrons raise interest as antitumor agents for the treatment of poorly curable or drug-resistant tumors. Herein, we have synthesized amphiphilic triazine-phosphorus dendrons bearing multiple copper (II) or gold (III) complexes on the periphery and a branched hydrophobic fragment at the focal point.
View Article and Find Full Text PDFBackground: According to current data, an effective Ebola virus vaccine should induce both humoral and T-cell immunity. In this work, we focused our efforts on methods for delivering artificial T-cell immunogen in the form of a DNA vaccine, using generation 4 polyamidoamine dendrimers (PAMAM G4) and a polyglucin:spermidine conjugate (PG).
Methods: Optimal conditions were selected for obtaining complexes of previously developed DNA vaccines with cationic polymers.
Nanoconstructions composed of lipid vesicles and inorganic units (nanoparticles, metal complexes) arouse much interest across materials science and nanotechnology as hybrid materials combining useful functionalities from both parts. Ideally, these units are to be embedded into the bilayer to keep the biophysical performance of lipid vesicles having inorganic moieties screened from the environment. This can be achieved by doping a lipid bilayer with cluster complexes of transition metals.
View Article and Find Full Text PDFThis paper examines the complexation of anti-cancer small interfering RNAs (siRNAs) by cationic carbosilane dendrimers, and the interaction of the formed complexes with HeLa and HL-60 cancer cells. Stepwise formation of the complexes accompanied by the evolution of their properties has been observed through the increase of the charge ratio (dendrimer/siRNA). The complexes decrease the viability of both "easy-to-transfect" cells (HeLa) and "hard-to transfect" ones (HL-60), indicating a high potential of the cationic carbosilane dendrimers for siRNA delivery into tumor cells.
View Article and Find Full Text PDFIn this work, we report the assemblage of hydrogels from phosphorus dendrimers in the presence of biocompatible additives and the study of their interactions with nucleic acids. As precursors for hydrogels, phosphorus dendrimers of generations 1⁻3 based on the cyclotriphosphazene core and bearing ammonium or pyridinium acetohydrazones (Girard reagents) on the periphery have been synthesized. The gelation was done by the incubation of dendrimer solutions in water or phosphate-buffered saline in the presence of biocompatible additives (glucose, glycine or polyethylene glycol) to form physical gels.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
February 2018
This paper explores the potential of a modified phosphotriester approach to the synthesis of 5'-phosphoramidate derivatives of DNA and RNA oligonucleotides. The modification of 5'-deprotected support-bound oligonucleotides is done in two steps: i) conversion of the 5'-OH group of an oligonucleotide into an activated phosphodiester, and ii) treatment of the activated phosphodiester with an aminocompound. The approach is efficient and compatible with conventional solid phase oligonucleotide synthesis.
View Article and Find Full Text PDFIn this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes.
View Article and Find Full Text PDFA novel family of amphiphilic ionic carbosilane dendrons containing fatty acids at the focal point were synthesized and characterized. They spontaneously self-assembled in aqueous solution into micelles both in the absence and presence of salt, as confirmed by surface tension, conductivity, and DLS measurements. Dendron based micelles have spherical shapes and increase in size on decreasing dendron generation.
View Article and Find Full Text PDFNovel hybrids of fluorescein-labeled poly(ethylene glycol)-modified single-walled carbon nanotubes (SWCNTs) with nucleic acids were prepared. 5'-Pyrene conjugates of oligodeoxyribonucleotides were used to construct the noncovalent hybrids, with the pyrene residues acting as anchor groups, immobilizing an oligonucleotide on the SWCNT surface. The hybrid formation characteristics were studied using ζ-potential measurements and adsorption isotherm plots.
View Article and Find Full Text PDF