Recently, giant coercivities (20-42 kOe) and sub-terahertz natural ferromagnetic resonance (NFMR) at 100-300 GHz were observed for single-domain M-type hexaferrite particles with high aluminum substitution. Herein, we fabricated dense ceramics of SrCaFeAlO and, for the first time, investigated their magnetostatic and magnetodynamic properties in the temperature range of 5-300 K. It was shown that dense ceramics maintain their high magnetic hardness (a coercivity of 10-20 kOe) and NFMR frequencies of 140-200 GHz durably in the entire temperature range.
View Article and Find Full Text PDFIn this study, we demonstrate the sintering of metastable ε-FeO nanoparticles into nanoceramics containing 98 wt% of the epsilon iron oxide phase and with a specific density of 60%. At room temperature, the ceramics retain a giant coercivity of 20 kOe and a sub-terahertz absorption at 190 GHz inherent in the initial nanoparticles. The sintering leads to an increase in the frequencies of the natural ferromagnetic resonance at 200-300 K and larger coercivities at temperatures below 150 K.
View Article and Find Full Text PDFThe temperature behavior of the magnetic properties is crucial for the application of magnetic materials. Recently, giant room temperature coercivities (20-36 kOe) and sub-terahertz natural ferromagnetic resonance (NFMR) frequencies (160-250 GHz) were observed for single-domain M-type hexaferrites with high aluminum substitution. Herein, the temperature dependences of the magnetic properties and natural ferromagnetic resonance are studied at 5-300 K for single-domain SrCaFeAlO ( = 1.
View Article and Find Full Text PDFThe first instance of a rare-earth single-ion magnet in a robust extended solid has been found, which possesses a crystal structure different from apatite. The compound exhibits slow relaxation of magnetization in a zero field revealing simultaneously two energy barriers for magnetization reversal.
View Article and Find Full Text PDFCorrection for 'High-coercivity hexaferrite ceramics featuring sub-terahertz ferromagnetic resonance' by Evgeny A. Gorbachev , , 2022, , 1264-1272, DOI: https://doi.org/10.
View Article and Find Full Text PDFHerein, we demonstrate for the first time compact ferrite ceramics with giant coercivity. The materials are manufactured sintering single-domain SrCaFeAlO particles synthesized by a citrate-nitrate auto-combustion method. The obtained ceramics show coercivities up to 22.
View Article and Find Full Text PDFExchange-coupled hard/soft ferrite nanoparticles are prospective to squeeze out a part of expensive magnets based on rare-earth elements. However, the known exchange-coupled composite ferrite nanoparticles often suffer from the lack of a powerful enough hard magnetic core, high defectivity of magnetic phases, and a poor interface between them. Herein, we demonstrate the first efficient synthesis of sandwiched nanomagnets, which exhibit a pronounced exchange-coupling effect.
View Article and Find Full Text PDFMagnetically hard ferrites attract considerable interest due to their ability to maintain a high coercivity of nanosized particles and therefore show promising applications as nanomagnets ranging from magnetic recording to biomedicine. Herein, we report an approach to prepare nonsintered single-domain nanoparticles of chromium-substituted hexaferrite via crystallization of glass in the system SrO-FeO-CrO-BO. We have observed a formation of plate-like hexaferrite nanoparticles with diameters changing from 20 to 190 nm depending on the annealing temperature.
View Article and Find Full Text PDFTb for Ca substituted hydroxyapatite ceramic samples with composition Ca10-xTbx(PO4)6(OH1-x/2-δ)2, where x = 0.1, 0.5, were synthesized by solid-state reaction at 1300 °C in air, and their crystal structure, vibrational spectra, luminescence, and magnetic properties were studied.
View Article and Find Full Text PDF