CRISPR/Cas9-based technologies are revolutionising the way we engineer microbial cells. One of the key advantages of CRISPR in strain design is that it enables chromosomal integration of marker-free DNA, eliminating laborious and often inefficient marker recovery procedures. Despite the benefits, assembling CRISPR/Cas9 editing systems is still not a straightforward process, which may prevent its use and applications.
View Article and Find Full Text PDFLinalool is a pleasant-smelling monoterpenoid widely found in the essential oils of most flowers. Due to its biologically active properties, linalool has considerable commercial potential, especially in the food and perfume industries. In this study, the oleaginous yeast Yarrowia lipolytica was successfully engineered to produce linalool de novo.
View Article and Find Full Text PDFCRISPR/Cas9-based technologies are revolutionising the way we engineer microbial cells. One of the key advantages of CRISPR in strain design is that it enables chromosomal integration of marker-free DNA, eliminating laborious and often inefficient marker recovery procedures. Despite the benefits, assembling CRISPR/Cas9 editing systems is still not a straightforward process, which may prevent its use and applications.
View Article and Find Full Text PDFDuring cultivation under nitrogen starvation, Yarrowia lipolytica produces a mixture of citric acid and isocitric acid whose ratio is mainly determined by the carbon source used. We report that mitochondrial succinate-fumarate carrier YlSfc1 controls isocitric acid efflux from mitochondria. YlSfc1 purified and reconstituted into liposomes transports succinate, fumarate, oxaloacetate, isocitrate and α-ketoglutarate.
View Article and Find Full Text PDFMitochondrial citrate carrier plays a central role in exporting acetyl-CoA in the form of citrate from mitochondria to cytosol thereby connecting carbohydrate catabolism and lipogenesis. In this study, Yarrowia lipolytica mitochondrial citrate carrier was functionally defined and characterized. Firstly, deletion of Y.
View Article and Find Full Text PDFIn recent years, bio-based production of free fatty acids from renewable resources has attracted attention for their potential as precursors for the production of biofuels and biochemicals. In this study, the oleaginous yeast Yarrowia lipolytica was engineered to produce free fatty acids by eliminating glycerol metabolism. Free fatty acid production was monitored under lipogenic conditions with glycerol as a limiting factor.
View Article and Find Full Text PDFThe oleaginous yeast Yarrowia lipolytica is a convenient model for investigating lipid biosynthesis and for engineering high lipid accumulated strains. In this organism, the pentose phosphate pathway is the major source of NADPH for lipid biosynthesis. Thus, we over-expressed gene encoding NADP-dependent glucose-6-phosphate dehydrogenase (ZWF1) in a strain deficient in peroxisome biogenesis.
View Article and Find Full Text PDFBio-based succinic acid production can redirect industrial chemistry processes from using limited hydrocarbons to renewable carbohydrates. A fermentation process that does not require pH-titrating agents will be advantageous to the industry. Previously, a Yarrowia lipolytica strain that was defective for succinate dehydrogenase was constructed and was found to accumulate up to 17.
View Article and Find Full Text PDFThe vast number of repetitive genomic elements was identified in the genome of Rhizopus oryzae. Such genomic repeats can be used as homologous regions for integration of plasmids. Here, we evaluated the use of two different repeats: the short (575 bp) rptZ, widely distributed (about 34 copies per genome) and the long (2053 bp) rptH, less prevalent (about 15 copies).
View Article and Find Full Text PDFThe gene encoding Rhizopus oryzae lipase (ROL) was expressed in the non-conventional yeast Yarrowia lipolytica under the control of the strong inducible XPR2 gene promoter. The effects of three different preprosequence variants were examined: a preprosequence of the Y. lipolytica alkaline extracellular protease (AEP) encoded by XPR2, the native preprosequence of ROL, and a hybrid variant of the presequence of AEP and the prosequence of ROL.
View Article and Find Full Text PDFBio-based succinate is still a matter of special emphasis in biotechnology and adjacent research areas. The vast majority of natural and engineered producers are bacterial strains that accumulate succinate under anaerobic conditions. Recently, we succeeded in obtaining an aerobic yeast strain capable of producing succinic acid at low pH.
View Article and Find Full Text PDFThe cell surface display of enzymes is of great interest because of its simplified purification stage and the possibility for recycling in industrial processes. In this study, we have focused on the cell wall immobilization of Yarrowia lipolytica Lip2 protein--an enzyme that has a wide technological application. By genome analysis of Y.
View Article and Find Full Text PDFBiotechnological production of weak organic acids such as succinic acid is most economically advantageous when carried out at low pH. Among naturally occurring microorganisms, several bacterial strains are known to produce considerable amounts of succinic acid under anaerobic conditions but they are inefficient in performing the low-pH fermentation due to their physiological properties. We have proposed therefore a new strategy for construction of an aerobic eukaryotic producer on the basis of the yeast Yarrowia lipolytica with a deletion in the gene coding one of succinate dehydrogenase subunits.
View Article and Find Full Text PDF