Publications by authors named "Evgeniya N Andreyeva"

Compared to transcription initiation, much less is known about transcription termination. In particular, large-scale mutagenesis studies have, so far, primarily concentrated on promoter and enhancer, but not terminator sequences. Here, we used a massively parallel reporter assay (MPRA) to systematically analyze the influence of short (8 bp) sequence variants (mutations) located downstream of the polyadenylation signal (PAS) on the steady-state mRNA level of the upstream gene, employing an reporter and human HEK293T cells as a model system.

View Article and Find Full Text PDF

Asynchronous replication of chromosome domains during S phase is essential for eukaryotic genome function, but the mechanisms establishing which domains replicate early versus late in different cell types remain incompletely understood. Intercalary heterochromatin domains replicate very late in both diploid chromosomes of dividing cells and in endoreplicating polytene chromosomes where they are also underreplicated. SNF2-related factor SUUR imparts locus-specific underreplication of polytene chromosomes.

View Article and Find Full Text PDF

Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood.

View Article and Find Full Text PDF

The ATP-dependent chromatin remodeling factor CHD1 is essential for the assembly of variant histone H3.3 into paternal chromatin during sperm chromatin remodeling in fertilized eggs. It remains unclear, however, if CHD1 has a similar role in normal diploid cells.

View Article and Find Full Text PDF

The disruption of the protective intestinal barrier-the 'leaky gut'-is a common complication of the inflammatory bowel disease. There is limited data on the mechanisms of the intestinal barrier disruption upon low-grade inflammation characteristic of patients with inflammatory bowel disease in clinical remission. Thus, animal models that recapitulate the complexity of chronic intestinal inflammation in vivo are of particular interest.

View Article and Find Full Text PDF

Background: The Drosophila central nervous system (CNS) is a convenient model system for the study of the molecular mechanisms of conserved neurobiological processes. The manipulation of gene activity in specific cell types and subtypes of the Drosophila CNS is frequently achieved by employing the binary Gal4/UAS system. However, many Gal4 driver lines available from the Bloomington Drosophila Stock Center (BDSC) and commonly used in Drosophila neurobiology are still not well characterized.

View Article and Find Full Text PDF

Moonlighting proteins can perform one or more additional functions besides their primary role. It has been posited that a protein can acquire a moonlighting function through a gradual evolutionary process, which is favored when the primary and secondary functions are exerted in different cellular compartments. Transcription factors (TFs) and splicing factors (SFs) control processes that occur in interphase nuclei and are strongly reduced during cell division, and are therefore in a favorable situation to evolve moonlighting mitotic functions.

View Article and Find Full Text PDF

The Drosophila Nonspecific Lethal (NSL) complex is a major transcriptional regulator of housekeeping genes. It contains at least seven subunits that are conserved in the human KANSL complex: Nsl1/Wah (KANSL1), Dgt1/Nsl2 (KANSL2), Rcd1/Nsl3 (KANSL3), Rcd5 (MCRS1), MBD-R2 (PHF20), Wds (WDR5) and Mof (MOF/KAT8). Previous studies have shown that Dgt1, Rcd1 and Rcd5 are implicated in centrosome maintenance.

View Article and Find Full Text PDF

During production of the original article [1], there was a technical error that resulted in author corrections not being rendered in the PDF version of the article.

View Article and Find Full Text PDF

Background: The calmodulin-regulated spectrin-associated proteins (CAMSAPs) belong to a conserved protein family, which includes members that bind the polymerizing mcrotubule (MT) minus ends and remain associated with the MT lattice formed by minus end polymerization. Only one of the three mammalian CAMSAPs, CAMSAP1, localizes to the mitotic spindle but its function is unclear. In Drosophila, there is only one CAMSAP, named Patronin.

View Article and Find Full Text PDF

Background: Expression of the CNDP2 gene is frequently up- or down-regulated in different types of human cancers. However, how the product of this gene is involved in cell growth and proliferation is poorly understood. Moreover, our knowledge of the functions of the CNDP2 orthologs in well-established model organisms is scarce.

View Article and Find Full Text PDF

Border cell (BC) migration during Drosophila oogenesis is an excellent model for the analysis of the migratory and invasive cell behavior. Most studies on BC migration have exploited a slbo-Gal4 driver to regulate gene expression in these cells or to mark them. Here, we report that the slbo-Gal4 transgene present in the line #6458 from the Bloomington Stock Center is inserted within chickadee (chic), a gene encoding the actin-binding protein Profilin, which promotes actin polymerization and is known to be involved in cell migration.

View Article and Find Full Text PDF

Background: S2 cells are one of the most widely used Drosophila melanogaster cell lines. A series of studies has shown that they are particularly suitable for RNAi-based screens aimed at the dissection of cellular pathways, including those controlling cell shape and motility, cell metabolism, and host-pathogen interactions. In addition, RNAi in S2 cells has been successfully used to identify many new mitotic genes that are conserved in the higher eukaryotes, and for the analysis of several aspects of the mitotic process.

View Article and Find Full Text PDF

Eukaryotic DNA replicates asynchronously, with discrete genomic loci replicating during different stages of S phase. larval tissues undergo endoreplication without cell division, and the latest replicating regions occasionally fail to complete endoreplication, resulting in underreplicated domains of polytene chromosomes. Here we show that linker histone H1 is required for the underreplication (UR) phenomenon in salivary glands.

View Article and Find Full Text PDF

Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing.

View Article and Find Full Text PDF

Proper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell-cycle regulation. Importantly, DNA replication is highly influenced by developmental cues.

View Article and Find Full Text PDF

SUUR (Suppressor of Under-Replication) protein is responsible for late replication and, as a consequence, for DNA underreplication of intercalary and pericentric heterochromatin in Drosophila melanogaster polytene chromosomes. However, the mechanism by which SUUR slows down the replication process is not clear. To identify possible partners for SUUR we performed a yeast two-hybrid screen using full-length SUUR as bait.

View Article and Find Full Text PDF

The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: