Interaction of chitosan and its derivatives with proteins of animal blood at blood pH relevant conditions is of a particular interest for construction of antimicrobial chitosan/protein-based drug delivery systems. In this work, the interaction of a series of N-reacetylated oligochitosans (RA-CHI) having M of 10-12 kDa and differing in the degree of acetylation (DA 19, 24, and 40 %) with bovine serum albumin (BSA) in alkalescent media is described in first. It is shown that RA-CHI forms soluble complexes with BSA in solutions with pH 7.
View Article and Find Full Text PDFHerein, we describe in first the application of squid pens for the preparation of pharmaceutical-grade oligochitosan hydrochloride with the physicochemical characteristics corresponding with the requirements of the European Pharmacopoeia. It is shown that the use of specific properties of squid pens as a source of parent chitosan allows preparing the product with a high yield at relatively moderate process conditions used for squid pens treatments and chitosan depolymerization.
View Article and Find Full Text PDFAntimicrobial activity of chitosan in protein-rich media is of a particular interest for various protein-based drug delivery and other systems. For the first time, bacteriostatic activity of chitosan derivatives in the presence of caseinate sodium (CAS) was studied and discussed. Complexation of chitosan derivatives soluble in acidic (CH and RCH) or alkalescent (RCH) media with CAS was confirmed by fluorescent spectroscopy, turbodimetry, light scattering data and measurement of electrical potentials of CAS/chitosan derivative complexes.
View Article and Find Full Text PDFThe interaction between carboxymethyl cellulose and partially reacetylated chitosan soluble in acidic and alkaline aqueous media is studied by light scattering and isothermal titration calorimetry in a wide pH range. It is shown that the formation of polyelectrolyte complexes (PEC) can occur in the pH range of 6-8, while this pair of polyelectrolytes loses the ability to complexation upon transition to a more alkaline medium. The revealed dependence of the observed enthalpy of interaction on the ionization enthalpy of the buffer indicates the participation of proton transfer from the buffer substance to chitosan and its additional ionization in the binding process.
View Article and Find Full Text PDFPhase analysis, spectroscopic, and light scattering methods are applied to investigate the peculiarities of the interaction of oligochitosan (OCHI) with native and preheated bovine serum albumin (BSA) as well as the conformational and structural changes of BSA in BSA/OCHI complex. As shown, untreated BSA binds with OCHI mainly forming soluble electrostatic nanocomplexes, with the binding causing an increase in BSA helicity without a change in the local tertiary structure and thermal stability of BSA. In contrast, soft preheating at 56 °C enhances the complexation of BSA with OCHI and slightly destabilizes the secondary and local tertiary structures of BSA within the complex particles.
View Article and Find Full Text PDFСomplexation of oligochitosan (OCHI) having the degree of acetylation (DA 26 %) with sodium caseinate (SC) at pH 5.8 and 7.2 is described and compared with the complexation of OCHI (DA 2 %) at pH 5.
View Article and Find Full Text PDFInteraction of binary chitosan/nonionic surfactant (NIS) system with sodium dodecyl sulfate (SDS) in aqueous solution is described using turbodimetry, light scattering, electophoretic mobility and cryogenic electron microscopy. The formation of insoluble CHI/SDS complexes is weakened with a decrease in molecular weight of chitosan and critical micelle concentration of NIS as well as with an increase in NIS concentration. Soluble chitosan/NIS complexes absorb SDS molecules until the charge of mixed chitosan/NIS/SDS complexes reaches a critical value that depends on chitosan molecular weight followed by aggregation of primary electrostatic complexes via hydrogen bonding to complex nanoparticles.
View Article and Find Full Text PDFIn this work, the interaction between the negatively charged surfactant sodium dodecyl sulfate (SDS) and partially N-reacetylated chitosan (RA-CHI), which is soluble at pH range up to pH 12, is studied in a wide pH range including alkaline media by light scattering (LS) and isothermic titration calorimetry (ITC). It is shown that in the weakly alkaline medium (pH 7.4), RA-CHI/SDS interaction is exothermic and cooperative.
View Article and Find Full Text PDFMolecular interaction of chitosan with sodium dodecyl sulfate (SDS) is a more complicated process than it has been imagined so far. For the first time it has been shown that the shorter chitosan chains are, the more preferably they interact with the SDS and the larger-in-size microparticles they form. The influence of ionic strength, urea and temperature on microparticles formation allows interpreting the mechanism of microparticles formation as a cooperative electrostatic interaction between SDS and chitosan with simultaneous decrease in the surface charge of the complexes initiating the aggregation of microparticles.
View Article and Find Full Text PDFA series of industrial chitosans were analyzed on the presence of residual heavy metals. For the first time, optical microscopy data showed that chitosan solution retained a huge number of insoluble microparticles while transmittance electron microscopy revealed that insoluble fibrous microparticles were incrusted by crystalline nanoparticles with the sizes 5-50 nm. A series of filters used for chitosan solution filtration was analyzed on the presence of retained heavy metal and other residuals by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDXS) and mass-spectrometry with inductively coupled plasma (ICP-MS) methods.
View Article and Find Full Text PDFFor biomedical applications, chitosan and oligochitosan must be appropriately characterized and meet pharmacological requirements in terms of contamination by residual heavy metals. In this work, a series of commercial chitosans was analyzed by ICP-MS method, and high concentration of Fe (44-382 ppm), Cr (3.1-35.
View Article and Find Full Text PDFIt is well known that chitosan degradation by nitrous acid leads to oligochitosan (oligoCHI-ahm) bearing reactive 2,5-anhydromannose (3,4-dihydroxy-5-hydroxymethyl-tetrahydrofuran-2-aldehyde) units at the new reducing ends of macromolecules. Standard protocol requires reduction of oligoCHI-ahm with NaBH to corresponding oligoCHI-hml bearing unreactive hydroxymethyl group instead of reactive aldehyde group. For the first time, HP SEC as well as UV and CD spectroscopy methods have revealed that the reduction leads to an indefinite side modification and the formation of a branched oligoCHI-hml with increased molecular weight.
View Article and Find Full Text PDFOligochitosan (short chain chitosan) is more soluble in acidic aqueous media than a high molecular weight (MW) chitosan, but its antimicrobial activity decreases with increase in degree of acetylation (DA) and increase in pH above a critical pH threshold point. In the present study, oligochitosans varying in MW were additionally N-acetylated and their self-assembly properties and antibacterial activity toward Staphylococcus aureus and Escherichia coli were investigated in a wide pH range as a function of MW and DA. Light scattering studies reveals that reacetyleted oligochitosan with M ≤ 11 kDa is completely soluble in alkaline media (up to pH 12.
View Article and Find Full Text PDFA series of oligochitosans (short chain chitosans) prepared by acidic hydrolysis of chitosan and characterized by their molecular weight, polydispersity and degree of deacetylation were used to determine their anticandidal activities. This study has demonstrated that oligochitosans show a high fungistatic activity (MIC 8-512 μg/ml) against Candida species and clinical isolates of Candida albicans, which are resistant to a series of classic antibiotics. Flow cytometry analysis showed that oligochitosan possessed a high fungicidal activity as well.
View Article and Find Full Text PDFLight scattering studies indicate that oligochitosan (short-chain chitosan) solutions contain aggregates at pH values below the critical pH of phase separation, while at or above this point the gel phase coexists with the aggregate solution. This work demonstrates for the first time that the presence of D-glucosamine in an oligochitosan solution shifts the critical pH to a higher value and improves the oligochitosan antibacterial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermis in neutral and slightly alkaline aqueous media. By comparing the results of light scattering studies and antimicrobial assays one can conclude that the antimicrobial activity of oligochitosan is dependent on its unimolecular form, not its supramolecular structures.
View Article and Find Full Text PDF