Publications by authors named "Evgeniy Kolesnikov"

Preparing high-strength polymeric materials using an orientation drawing process is considered one of the most urgent topics in the modern world. Graphene nanoplates/polyaniline (GNP/PANI) were added to the commercial grade UHMWPE (GUR 4120) matrix as a filler with antifriction properties. The effect of GNP/PANI addition on the structure, the orientation process, the void formation (cavitation), the mechanical, and tribological properties was studied using differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Calcium-magnesium silicate ceramics, diopside, is a promising material for use in bone plastics, but until now the possibility of its use as a carrier of recombinant bone morphogenetic protein-2 (BMP-2) has not been studied, as well as the features of reparative osteogenesis mediated by the materials based on diopside with BMP-2. Powder of calcium-magnesium silicate ceramics was obtained by solid-state synthesis using biowaste - rice husks and egg shells - as source components. Main phase of the obtained ceramics was diopside.

View Article and Find Full Text PDF

Osteoplastic materials PLA/PCL/HA and PHB/HA and scaffolds with a highly porous structure based on them with potential applications in regenerative medicine have been obtained by solvent casting with thermopressing and salt leaching for PLA-based samples and solid-state mixing with subsequent thermopressing and salt leaching for PHB-based samples. The scaffolds were characterized by SEM-EDX, DSC, FTIR spectroscopy, mechanical tests in compression, measurement of the contact angle, in vitro studies, including loading by recombinant BMP-2 and EPO and their release kinetics, and in vivo studies on a model of regeneration of critical-sized cranial defects in mice. Biomimetic scaffolds with micropores sizes ranged from 300 to 500 μm and volume porosity of 70% imitate trabecular bone's structure and have increased hydrophilicity to achieve osteoconductive properties.

View Article and Find Full Text PDF

The major problem in bone tissue engineering is the development of scaffolds which can simultaneously meet the requirements of porous structure, as well as have the ability to guide the regeneration of damaged tissue by biological fixation. Composites containing biodegradable matrix and bioactive filler are the new hope in this research field. Herein we employed a simple and facile solvent casting particulate-leaching method for producing polylactide acid/hydroxyapatite (PLA/HA) composites at room temperature.

View Article and Find Full Text PDF

Since obtaining a highly oriented structure based on a large-scale commercial ultra-high molecular weight polyethylene (UHMWPE) is considered very difficult due to its high molecular weight and melting index, modifying the structure of these cheap commercial UHMWPE brands into a supra-molecular structure with fiber-forming properties by adding a small amount of polyethylene wax (PE-wax) will provide the possibility to obtain highly oriented UHMWPE products with enhanced mechanical and tribological properties. In this work, highly oriented UHMWPE/PE-wax films were prepared. The PE-wax affected the UHMWPE as an intermolecular lubricant.

View Article and Find Full Text PDF

A promising direction for the replacement of expanded bone defects is the development of bioimplants based on synthetic biocompatible materials impregnated with growth factors that stimulate bone remodeling. Novel biomimetic highly porous ultra-high molecular weight polyethylene (UHMWPE)/40% hydroxyapatite (HA) scaffold for reconstructive surgery with the porosity of 85 ± 1% vol. and a diameter of pores in the range of 50-800 μm was developed.

View Article and Find Full Text PDF

Highly oriented UHMWPE films were reinforced with functionalized graphene nanoplates (GNP). GNP was functionalized by deposition of polyaniline (PANI) on the GNP surface. The structure of GNP/PANI was studied by Raman spectroscopy, and the structure of xerogels and films based on UHMWPE was studied by DSC and SEM.

View Article and Find Full Text PDF