Graft copolymers of collagen and polyacrylamide (PAA) were synthesized in a suspension of acetic acid dispersion of fish collagen and acrylamide (AA) in the presence of tributylborane (TBB). The characteristics of the copolymers were determined using infrared spectroscopy and gel permeation chromatography (GPC). Differences in synthesis temperature between 25 and 60 °C had no significant effect on either proportion of graft polyacrylamide generated or its molecular weight.
View Article and Find Full Text PDFBiopolymers, in particular collagen and fibrinogen, are the leading materials for use in tissue engineering. When developing technology for scaffold formation, it is important to understand the properties of the source materials as well as the mechanisms that determine the formation of the scaffold structures. Both factors influence the properties of scaffolds to a great extent.
View Article and Find Full Text PDFAt present there is a growing need for tissue engineering products, including the products of scaffold-technologies. Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide means of cell transfer for therapeutic treatments and for inducing tissue regeneration. This work presents original hydrogel biopolymer scaffolds based on a blood plasma cryoprecipitate and collagen and formed under conditions of enzymatic hydrolysis.
View Article and Find Full Text PDF