EClinicalMedicine
September 2024
Background: Even patients with normal computed tomography (CT) head imaging may experience persistent symptoms for months to years after mild traumatic brain injury (mTBI). There is currently no good way to predict recovery and triage patients who may benefit from early follow-up and targeted intervention. We aimed to assess if existing prognostic models can be improved by serum biomarkers or diffusion tensor imaging metrics (DTI) from MRI, and if serum biomarkers can identify patients for DTI.
View Article and Find Full Text PDFSports-related concussions may cause white matter injuries and persistent post-concussive symptoms (PPCS). We hypothesized that athletes with PPCS would have neurocognitive impairments and white matter abnormalities that could be revealed by advanced neuroimaging using ultra-high field strength diffusion tensor (DTI) and diffusion kurtosis (DKI) imaging metrics and cerebrospinal fluid (CSF) biomarkers. A cohort of athletes with PPCS severity limiting the ability to work/study and participate in sport school and/or social activities for ≥6 months completed 7T magnetic resonance imaging (MRI) (morphological T1-weighed volumetry, DTI and DKI), extensive neuropsychological testing, symptom rating, and CSF biomarker sampling.
View Article and Find Full Text PDFBackground: Magnetic resonance imaging (MRI) carries prognostic importance after traumatic brain injury (TBI), especially when computed tomography (CT) fails to fully explain the level of unconsciousness. However, in critically ill patients, the risk of deterioration during transfer needs to be balanced against the benefit of detecting prognostically relevant information on MRI. We therefore aimed to assess if day of injury serum protein biomarkers could identify critically ill TBI patients in whom the risks of transfer are compensated by the likelihood of detecting management-altering neuroimaging findings.
View Article and Find Full Text PDFThere are many ways to acquire and process diffusion MRI (dMRI) data for group studies, but it is unknown which maximizes the sensitivity to white matter (WM) pathology. Inspired by this question, we analyzed data acquired for diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) at 3T (3T-DTI and 3T-DKI) and DTI at 7T in patients with systemic lupus erythematosus (SLE) and healthy controls (HC). Parameter estimates in 72 WM tracts were obtained using TractSeg.
View Article and Find Full Text PDFThe Apparent Diffusion Coefficient (ADC) is considered an importantimaging biomarker contributing to the assessment of tissue microstructure and pathophy- siology. It is calculated from Diffusion-Weighted Magnetic Resonance Imaging (DWI) by means of a diffusion model, usually without considering any motion during image acquisition. We propose a method to improve the computation of the ADC by coping jointly with both motion artifacts in whole-body DWI (through group-wise registration) and possible instrumental noise in the diffusion model.
View Article and Find Full Text PDFSymptoms of vestibular dysfunction such as dizziness and vertigo are common after sports-related concussions (SRC) and associated with a worse outcome and a prolonged recovery. Vestibular dysfunction after SRC can be because of an impairment of the peripheral or central neural parts of the vestibular system. The aim of the present study was to establish the cause of vestibular impairment in athletes with SRC who have persisting post-concussive symptoms (PPCS).
View Article and Find Full Text PDFImportance: Persistent symptoms after mild traumatic brain injury (mTBI) represent a major public health problem.
Objective: To identify neuroanatomical substrates of mTBI and the optimal timing for magnetic resonance imaging (MRI).
Design, Setting, And Participants: This prospective multicenter cohort study encompassed all eligible patients from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study (December 19, 2014, to December 17, 2017) and a local cohort (November 20, 2012, to December 19, 2013).
An increasing number of elderly patients are being affected by traumatic brain injury (TBI) and a significant proportion are on pre-hospital antithrombotic therapy for cardio- or cerebrovascular indications. We have quantified the impact of antiplatelet/anticoagulant (APAC) agents on radiological lesion progression in acute TBI, using a novel, semi-automated approach to volumetric lesion measurement, and explored the impact of use on clinical outcomes in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. We used a 1:1 propensity-matched cohort design, matching controls to APAC users based on demographics, baseline clinical status, pre-injury comorbidities, and injury severity.
View Article and Find Full Text PDFWe present two novel automated image analysis methods to differentiate centroblast (CB) cells from noncentroblast (non-CB) cells in digital images of H&E-stained tissues of follicular lymphoma. CB cells are often confused by similar looking cells within the tissue, therefore a system to help their classification is necessary. Our methods extract the discriminatory features of cells by approximating the intrinsic dimensionality from the subspace spanned by CB and non-CB cells.
View Article and Find Full Text PDF