While various nanophotonic structures applicable to relatively thin crystalline silicon-based solar cells were proposed to ensure effective light in-coupling and light trapping in the absorber, it is of great importance to evaluate their performance on the solar module level under realistic irradiation conditions. Here, we analyze the annual energy yield of relatively thin (crystalline silicon (c-Si) wafer thickness between 5 μm and 80 μm) heterojunction (HJT) solar module architectures when optimized anti-reflective and light trapping titanium dioxide (TiO) nanodisk square arrays are applied on the front and rear cell interfaces, respectively. Our numerical study shows that upon reducing c-Si wafer thickness down to 5 μm, the relative increase of the annual energy yield can go up to 23.
View Article and Find Full Text PDFSystems with a discrete rotational symmetry [Formula: see text] where [Formula: see text] that also have electromagnetic duality symmetry exhibit zero backscattering. The impact of breaking one of the two symmetries on the emerging backscattering has not yet been systematically studied. Here, we investigate the effect that perturbatively breaking each of the two symmetries has on the backscattering off individual objects and 2D arrays.
View Article and Find Full Text PDF