Publications by authors named "Evgeniia Gilshtein"

Article Synopsis
  • Pb-Sn solar cells use a special layer called PEDOT:PSS to help move electricity, but it has some problems that make it less efficient.
  • A new molecule called 2-fluoro benzylammonium iodide (FBI) helps fix these problems and makes the solar cells work better.
  • With this new molecule, scientists were able to create solar cells that have a higher efficiency of 20.5% and can produce more energy.
View Article and Find Full Text PDF

Mass spectroscopy (MS) is a robust technique for polymer characterization, and it can provide the chemical fingerprint of a complete sample regarding polymer distribution chains. Nevertheless, polymer chemical properties such as polydispersity (Pd), average molecular mass (Mn), weight average molecular mass (Mw) and others are not determined by MS, as they are commonly characterized by gel permeation chromatography (GPC). In order to calculate polymer properties from MS, a Python script was developed to interpret polymer properties from spectroscopic raw data.

View Article and Find Full Text PDF

Transition metal fluoride (TMF) conversion-type cathodes promise up to 4 times higher gravimetric energy densities compared to those of common intercalation-type cathodes. However, TMF cathodes demonstrate sluggish kinetics, poor efficiencies, and incompatibility with many liquid electrolytes. In this work, coevaporated heterostructured iron and lithium fluoride (Fe-LiF) cathodes are investigated in thin-film solid-state batteries with a LiPON electrolyte and a lithium metal anode.

View Article and Find Full Text PDF

Li-alloying of CuZnSn(S, Se) (CZTSSe) absorbers is widely accepted for its beneficial influence on the performance of CZTSSe-based thin film solar cells. Given the degraded morphology characteristic of absorbers synthesized in the presence of excess Li concentrations, it is speculated that Li may be best incorporated into the absorber after synthesis. Here, we report an innovative method to add Li to synthesized CZTSSe by an electrochemical treatment using a liquid electrolyte.

View Article and Find Full Text PDF

A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-based synthesis to access phase-change memory tellurides in the form of colloidally stable quantum dots. We report a library of ternary MGeTe colloids (where M is Sn, Bi, Pb, In, Co, Ag) and then showcase the phase, composition, and size tunability for Sn-Ge-Te quantum dots.

View Article and Find Full Text PDF

Tin fluoride (SnF) is an indispensable additive for high-efficiency Pb-Sn perovskite solar cells (PSCs). However, the spatial distribution of SnF in the perovskite absorber is seldom investigated while essential for a comprehensive understanding of the exact role of the SnF additive. Herein, we revealed the spatial distribution of the SnF additive and made structure-optoelectronic properties-flexible photovoltaic performance correlation.

View Article and Find Full Text PDF

An aerosol jet printing (AJP) printing head built on top of precise motion systems can provide positioning deviation down to 3 μm, printing areas as large as 20 cm × 20 cm × 30 cm, and five-axis freedom of movement. Typical uses of AJP are 2D printing on complex or flexible substrates, primarily for applications in printed electronics. Nearly all commercially available AJP inks for 2D printing are designed and optimized to reach desired electronic properties.

View Article and Find Full Text PDF

Electrically conductive thin-film materials possessing high transparency are essential components for many optoelectronic devices. The advancement in the transparent conductor applications requires a replacement of indium tin oxide (ITO), one of the key materials in electronics. ITO and other transparent conductive metal oxides have several drawbacks, including poor flexibility, high refractive index and haze, limited chemical stability, and depleted raw material supply.

View Article and Find Full Text PDF

Following the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals.

View Article and Find Full Text PDF

The scalability of highly efficient organic-inorganic perovskite solar cells (PSCs) is one of the major challenges of solar module manufacturing. Various scalable methods have been explored to strive for uniform perovskite films of high crystal quality on large-area substrates, but each of these methods has individual limitations on the potential of successful commercialization of perovskite photovoltaics. Here, we report a fully scalable hybrid process, which combines vapor- and solution-based techniques to deposit high quality uniform perovskite films on large-area substrates.

View Article and Find Full Text PDF

The rear interface of kesterite absorbers with Mo back contact represents one of the possible sources of nonradiative voltage losses (Δ) because of the reported decomposition reactions, an uncontrolled growth of MoSe, or a nonoptimal electrical contact with high recombination. Several intermediate layers (IL), such as MoO, TiN, and ZnO, have been tested to mitigate these issues, and efficiency improvements have been reported. However, the introduction of IL also triggers other effects such as changes in alkali diffusion, altered morphology, and modifications in the absorber composition, all factors that can also influence Δ.

View Article and Find Full Text PDF

The sintering of alumina (AlO) traditionally occurs at high temperatures (up to ca. 1700 °C) and in significantly long times (up to several hours), which are required for the consolidation of the material by diffusion processes. Here we investigate the photonic sintering of alumina particles using millisecond flash lamp irradiation with extreme heating rates up to 10 K/min.

View Article and Find Full Text PDF

The rapid evolution of the neuromorphic computing stimulates the search for novel brain-inspired electronic devices. Synaptic transistors are three-terminal devices that can mimic the chemical synapses while consuming low power, whereby an insulating dielectric layer physically separates output and input signals from each other. Appropriate choice of the dielectric is crucial in achieving a wide range of operation frequencies in these devices.

View Article and Find Full Text PDF