Publications by authors named "Evgenia Kalogeraki"

A fundamental regulator of neuronal network development and plasticity is the extracellular matrix (ECM) of the brain. The ECM provides a scaffold stabilizing synaptic circuits, while the proteolytic cleavage of its components and cell surface proteins are thought to have permissive roles in the regulation of plasticity. The enzymatic proteolysis is thought to be crucial for homeostasis between stability and reorganizational plasticity and facilitated largely by a family of proteinases named matrix metalloproteinases (MMPs).

View Article and Find Full Text PDF

In recent years, evidence has accumulated that non-Mendelian transgenerational inheritance of qualities acquired through experience is possible. In particular, it has been shown that raising rodents in a so-called enriched environment (EE) can not only modify the animals' behavior and increase their susceptibility to activity-dependent neuronal network changes, but also influences both behavior and neuronal plasticity of the non-enriched offspring. Here, we tested whether such a transgenerational transmission can also be observed in the primary visual cortex (V1) using ocular dominance (OD) plasticity after monocular deprivation (MD) as a paradigm.

View Article and Find Full Text PDF

In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25-35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called "enriched environment" (EE), exhibit lifelong OD-plasticity.

View Article and Find Full Text PDF

The primary visual cortex (V1) is widely used to study brain plasticity, which is not only crucial for normal brain function, such as learning and memory, but also for recovery after brain injuries such as stroke. In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in V1 declines with age and is compromised by a lesion in adjacent and distant cortical regions. In contrast, mice raised in an enriched environment (EE), exhibit lifelong OD plasticity and are protected from losing OD plasticity after a stroke-lesion in the somatosensory cortex.

View Article and Find Full Text PDF

In standard cage (SC)-raised mice, ocular dominance (OD) plasticity of the primary visual cortex (V1) induced by monocular deprivation (MD) is maximal in juveniles, declines in adults, and is absent beyond postnatal day (PD) 110. Raising mice in an enriched environment (EE) preserved a juvenile-like OD plasticity after 7 days of MD until at least PD196, mediated by reductions of deprived eye responses in V1. Whether the sensitive phase for OD plasticity can be prolonged into older age and whether long-term EE modifies visual abilities was not yet known.

View Article and Find Full Text PDF

The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery.

View Article and Find Full Text PDF

It was previously shown that a small lesion in the primary somatosensory cortex (S1) prevented both cortical plasticity and sensory learning in the adult mouse visual system: While 3-month-old control mice continued to show ocular dominance (OD) plasticity in their primary visual cortex (V1) after monocular deprivation (MD), age-matched mice with a small photothrombotically induced (PT) stroke lesion in S1, positioned at least 1 mm anterior to the anterior border of V1, no longer expressed OD-plasticity. In addition, in the S1-lesioned mice, neither the experience-dependent increase of the spatial frequency threshold ("visual acuity") nor of the contrast threshold ("contrast sensitivity") of the optomotor reflex through the open eye was present. To assess whether these plasticity impairments can also occur if a lesion is placed more distant from V1, we tested the effect of a PT-lesion in the secondary motor cortex (M2).

View Article and Find Full Text PDF

Ocular dominance (OD) plasticity in the mouse primary visual cortex (V1) declines during aging and is absent beyond postnatal day (P) 110 when mice are raised in standard cages (SCs; Lehmann and Löwel, 2008). In contrast, raising mice in an enriched environment (EE) preserved a juvenile-like OD plasticity into late adulthood (Greifzu et al., 2014).

View Article and Find Full Text PDF

Ocular dominance (OD) plasticity in mouse primary visual cortex (V1) declines during postnatal development and is absent beyond postnatal day 110 if mice are raised in standard cages (SCs). An enriched environment (EE) promotes OD plasticity in adult rats. Here, we explored cellular mechanisms of EE in mouse V1 and the therapeutic potential of EE to prevent impairments of plasticity after a cortical stroke.

View Article and Find Full Text PDF
Article Synopsis
  • The Fras1/Frem family of proteins, including Fras1, Frem1, Frem2, and Frem3, are important for epithelial-mesenchymal adhesion during embryonic development, primarily found in basement membranes.
  • Recent research revealed that Fras1 is specifically located in the meningeal basement membrane of the developing mouse brain, showing a segmental distribution pattern.
  • The presence of Fras1 and Frem2 in areas near organizing centers like the roof plate suggests their potential involvement in signaling processes, indicating that there may be functional and structural differences within the meningeal basement membrane.
View Article and Find Full Text PDF