Publications by authors named "Evgenia Gerasimovskaya"

The purinergic signaling system is an evolutionarily conserved and critical regulatory circuit that maintains homeostatic balance across various organ systems and cell types by providing compensatory responses to diverse pathologies. Despite cardiovascular diseases taking a leading position in human morbidity and mortality worldwide, pulmonary diseases represent significant health concerns as well. The endothelium of both pulmonary and systemic circulation (bronchial vessels) plays a pivotal role in maintaining lung tissue homeostasis by providing an active barrier and modulating adhesion and infiltration of inflammatory cells.

View Article and Find Full Text PDF

Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) remain poorly treated inflammatory lung disorders. Both reactive oxygen species (ROS) and macrophages are involved in the pathogenesis of ALI/ARDS. Xanthine oxidoreductase (XOR) is an ROS generator that plays a central role in the inflammation that contributes to ALI.

View Article and Find Full Text PDF

Endothelial dysfunction and inflammation contribute to the vascular pathology of coronavirus disease (COVID-19). However, emerging evidence does not support direct infection of endothelial or other vascular wall cells, and thus inflammation may be better explained as a secondary response to epithelial cell infection. In this study, we sought to determine whether lung endothelial or other resident vascular cells are susceptible to productive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and how local complement activation contributes to endothelial dysfunction and inflammation in response to hypoxia and SARS-CoV-2-infected lung alveolar epithelial cells.

View Article and Find Full Text PDF
Article Synopsis
  • Sildenafil, a drug commonly used to treat pulmonary hypertension (PH), has impacts beyond vasodilation, particularly on the metabolic changes in vascular cells, specifically adventitial fibroblasts that are crucial in PH.
  • The study utilized integrated omics, examining plasma and cultured fibroblasts from PH patients to analyze sildenafil's effects on purine metabolism, revealing some alterations in purine metabolites post-treatment.
  • Results indicated that while sildenafil modestly reduced fibroblast proliferation and affected purine metabolism, it failed to fully normalize metabolic changes associated with PH, highlighting the complexity of its therapeutic impact.
View Article and Find Full Text PDF

Isolated endothelial cells are valuable in vitro model for vascular research. At present, investigation of disease-relevant changes in vascular endothelium at the molecular level requires established endothelial cell cultures, preserving vascular bed-specific phenotypic characteristics. Vasa vasorum (VV) form a microvascular network around large blood vessels, in both the pulmonary and systemic circulations, that are critically important for maintaining the integrity and oxygen supply of the vascular wall.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is a progressive cardiovascular disorder in which local vascular inflammation leads to increased pulmonary vascular remodeling and ultimately to right heart failure. The HDAC inhibitor butyrate, a product of microbial fermentation, is protective in inflammatory intestinal diseases, but little is known regarding its effect on extraintestinal diseases, such as PH. In this study, we tested the hypothesis that butyrate is protective in a Sprague-Dawley (SD) rat model of hypoxic PH.

View Article and Find Full Text PDF

The outbreak of COVID-19 disease, caused by SARS-CoV-2 beta-coronovirus, urges a focused search for the underlying mechanisms and treatment options. The lung is the major target organ of COVID-19, wherein the primary cause of mortality is hypoxic respiratory failure, resulting from acute respiratory distress syndrome, with severe hypoxemia, often requiring assisted ventilation. While similar in some ways to acute respiratory distress syndrome secondary to other causes, lungs of some patients dying with COVID-19 exhibit distinct features of vascular involvement, including severe endothelial injury and cell death via apoptosis and/or pyroptosis, widespread capillary inflammation, and thrombosis.

View Article and Find Full Text PDF

Purinergic G-protein-coupled receptors are ancient and the most abundant group of G-protein-coupled receptors (GPCRs). The wide distribution of purinergic receptors in the cardiovascular system, together with the expression of multiple receptor subtypes in endothelial cells (ECs) and other vascular cells demonstrates the physiological importance of the purinergic signaling system in the regulation of the cardiovascular system. This review discusses the contribution of purinergic P2Y receptors to endothelial dysfunction (ED) in numerous cardiovascular diseases (CVDs).

View Article and Find Full Text PDF

The vasa vasorum (VV), the microvascular network around large vessels, has been recognized as an important contributor to the pathological vascular remodeling in cardiovascular diseases. In bovine and rat models of hypoxic pulmonary hypertension (PH), we have previously shown that chronic hypoxia profoundly increased pulmonary artery (PA) VV permeability, associated with infiltration of inflammatory and progenitor cells in the arterial wall, perivascular inflammation, and structural vascular remodeling. Extracellular adenosine was shown to exhibit a barrier-protective effect on VV endothelial cells (VVEC) via cAMP-independent mechanisms, which involved adenosine A1 receptor-mediated activation of Gi-phosphoinositide 3-kinase-Akt pathway and actin cytoskeleton remodeling.

View Article and Find Full Text PDF

Angiogenic vasa vasorum (VV) expansion plays an essential role in the pathogenesis of hypoxia-induced pulmonary hypertension (PH), a cardiovascular disease. We previously showed that extracellular ATP released under hypoxic conditions is an autocrine/paracrine, the angiogenic factor for pulmonary artery (PA) VV endothelial cells (VVECs), acting via P2Y purinergic receptors (P2YR) and the Phosphoinositide 3-kinase (PI3K)-Akt-Mammalian Target of Rapamycin (mTOR) signaling. To further elucidate the molecular mechanisms of ATP-mediated VV angiogenesis, we determined the profile of ATP-inducible transcription factors (TFs) in VVECs using a TranSignal protein/DNA array.

View Article and Find Full Text PDF

Inflammation is a well-known feature of heart failure. Studies have shown that while some inflammation is required for repair during injury and is protective, prolonged inflammation leads to myocardial remodeling and apoptosis of cardiac myocytes. Various types of immune cells are implicated in myocardial inflammation and include neutrophils, macrophages, eosinophils, mast cells, natural killer cells, T cells, and B cells.

View Article and Find Full Text PDF

Ras-homologous (Rho)A/Rho-kinase pathway plays an essential role in many cellular functions, including contraction, motility, proliferation, and apoptosis, inflammation, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Given its role in many physiological and pathological functions, targeting can result in adverse effects and limit its use for therapy. In this review, we have summarized the role of RhoGTPases with an emphasis on RhoA in vascular disease and its impact on endothelial, smooth muscle, and heart and lung fibroblasts.

View Article and Find Full Text PDF

Cardiovascular research is fundamentally important to human health, and research progress in this field could not be overemphasized. Recently we were encouraged by the editors of to invite vascular biologists to submit their research and review articles to the special issue on "Vascular remodeling 2018: the updates" that would show up some overview of recent research from biomedical vascular science. In this special issue, we assembled five reviews and one original research paper devoted various areas of vascular biology and denoted recent advances in clinically relevant cellular and signaling mechanisms in vascular remodeling.

View Article and Find Full Text PDF

Intravascular ATP and adenosine have emerged as important regulators of endothelial barrier function, vascular remodeling and neovascularization at various pathological states, including hypoxia, inflammation and oxidative stress. By using human umbilical vein endothelial cells (HUVEC) and bovine vasa vasorum endothelial cells (VVEC) as representatives of macro- and microvessel phenotypes, this study was undertaken to evaluate cellular mechanisms contributing to physiological adaptation of vascular endothelium to hypoxia, with a particular emphasis on ectoenzymatic purine-converting activities and their link to intracellular ATP homeostasis and signaling pathways. Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), ecto-5'-nucleotidase/CD73 and ecto-adenylate kinase activities were determined by thin-layer chromatography (TLC) with H-labelled nucleotide substrates.

View Article and Find Full Text PDF

Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets.

View Article and Find Full Text PDF

Objective: Pulmonary artery smooth muscle cells (PASMCs) from neprilysin (NEP) null mice exhibit a synthetic phenotype and increased activation of Rho GTPases compared with their wild-type counterparts. Although Rho GTPases are known to promote a contractile SMC phenotype, we hypothesize that their sustained activity decreases SM-protein expression in these cells.

Approach And Results: PASMCs isolated from wild-type and NEP mice were used to assess levels of SM-proteins (SM-actin, SM-myosin, SM22, and calponin) by Western blotting, and were lower in NEP PASMCs compared with wild-type.

View Article and Find Full Text PDF

Angiogenesis is an energy-demanding process; however, the role of cellular energy pathways and their regulation by extracellular stimuli, especially extracellular nucleotides, remain largely unexplored. Using metabolic inhibitors of glycolysis (2-deoxyglucose) and oxidative phosphorylation (OXPHOS) (oligomycin, rotenone, and FCCP), we demonstrate that glycolysis and OXPHOS are both essential for angiogenic responses of vasa vasorum endothelial cell (VVEC). Treatment with P2R agonists, ATP, and 2-methylthioadenosine diphosphate trisodium salt (MeSADP), but not P1 receptor agonist, adenosine, increased glycolytic activity in VVEC (measured by extracellular acidification rate and lactate production).

View Article and Find Full Text PDF

Angiogenic expansion of the vasa vasorum (VV) is an important contributor to pulmonary vascular remodeling in the pathogenesis of pulmonary hypertension (PH). High proliferative potential endothelial progenitor-like cells have been described in vascular remodeling and angiogenesis in both systemic and pulmonary circulations. However, their role in hypoxia-induced pulmonary artery (PA) VV expansion in PH is not known.

View Article and Find Full Text PDF

Background: In a neonatal model of hypoxic pulmonary hypertension, a dramatic pulmonary artery adventitial thickening, accumulation of inflammatory cells in the adventitial compartment, and angiogenic expansion of the vasa vasorum microcirculatory network are observed. These pathophysiological responses suggest that rapidly proliferating vasa vasorum endothelial cells (VVEC) may exhibit increased permeability for circulating blood cells and macromolecules. However, the molecular mechanisms underlying these observations remain unexplored.

View Article and Find Full Text PDF

The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall.

View Article and Find Full Text PDF

Increased cell proliferation and migration, of several cell types are key components of vascular remodeling observed in pulmonary hypertension (PH). Our previous data demonstrate that adventitial fibroblasts isolated from pulmonary arteries of chronically hypoxic hypertensive calves (termed PH-Fibs) exhibit a "constitutively activated" phenotype characterized by high proliferative and migratory potential. Osteopontin (OPN) has been shown to promote several cellular activities including growth and migration in cancer cells.

View Article and Find Full Text PDF

In severe pulmonary arterial hypertension (PAH), vascular lesions are composed of phenotypically altered vascular and inflammatory cells that form clusters or tumorlets. Because macrophages are found in increased numbers in intravascular and perivascular space in human PAH, here we address the question whether macrophages play a role in pulmonary vascular remodeling and whether accumulation of macrophages in the lung vasculature could be compromised by the immune system. We used the mouse macrophage cell line RAW 264.

View Article and Find Full Text PDF