Publications by authors named "Evgenia G Korzhikova-Vlakh"

Drug treatment of glioblastoma, the most aggressive and widespread form of brain cancer, is complicated due to the difficulty of penetration of chemotherapeutic drugs through the blood-brain barrier (BBB). Moreover, with surgical removal of tumors, in 90 % of cases they reappear near the original focus. To solve this problem, we propose to use hydrogel based on cellulose nanocrystals grafted with poly(N-isopropylacrylamide) (CNC-g-PNIPAM) as a promising material for filling postoperative cavities in the brain with the release of antitumor drugs.

View Article and Find Full Text PDF

A fibrillar hydrogel was obtained by covalent crosslinking via Diels-Alder reaction of two types of cellulose nanocrystals (CNCs) with furan and maleimide groups. Gelation has been studied at various ratios of components and temperatures in the range from 20 to 60 °C. It was shown that the rheological properties of the hydrogel can be optimized by varying the concentration and ratio of components.

View Article and Find Full Text PDF

Tuberculosis remains one of the major health problems worldwide. Besides the lungs, tuberculosis affects other organs, including bones and joints. In the case of bone tuberculosis, current treatment protocols include necrectomy in combination with conventional anti-tuberculosis therapy, followed by reconstruction of the resulting bone defects.

View Article and Find Full Text PDF

Synthetic poly(amino acids) are a unique class of macromolecules imitating natural polypeptides and are widely considered as carriers for drug and gene delivery. In this work, we synthesized, characterized and studied the properties of amphiphilic copolymers obtained by the post-polymerization modification of poly(α,L-glutamic acid) with various hydrophobic and basic L-amino acids and D-glucosamine. The resulting glycopolypeptides were capable of forming nanoparticles that exhibited reduced macrophage uptake and were non-toxic to human lung epithelial cells (BEAS-2B).

View Article and Find Full Text PDF

Hypothesis: Hydrogels based on cellulose nanocrystals (CNC) have attracted great interest because of their sustainability, biocompatibility, mechanical strength and fibrillar structure. Gelation of colloidal particles can be induced by the introduction of polymers. Existing examples include gels based on CNC and derivatives of cellulose or poly(vinyl alcohol), however, gel structure and their application for extrusion printing were not shown.

View Article and Find Full Text PDF

The use of polymers for various purposes is increasing every year [...

View Article and Find Full Text PDF

The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.

View Article and Find Full Text PDF

Macroporous monolithic columns with different mean pore size (from 360 to 2020 nm) and appropriate flow-through properties were synthesized using free radical in situ copolymerization of glycidyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate. In order to predict the composition of porogen mixture to generate the pores in the interested size interval, the Hildebrand theory was used. Ribonuclease A and its specific low- and macromolecular substrates cytidine-2',3'-cyclic monophosphate sodium salt and RNA were applied as model system.

View Article and Find Full Text PDF