The challenge of balancing biodiversity protection with economic growth is epitomized by the development of renewable and unconventional energy, whose adoption is aimed at stemming the impacts of global climate change, yet has outpaced our understanding of biodiversity impacts. We evaluated the potential conflict between biodiversity protection and future electricity generation from renewable (wind farms, run-of-river hydro) and non-renewable (shale gas) sources in British Columbia (BC), Canada using three metrics: greenhouse gas (GHG) emissions, electricity cost, and overlap between future development and conservation priorities for several fish and wildlife groups - small-bodied vertebrates, large mammals, freshwater fish - and undisturbed landscapes. Sharp trade-offs in global versus regional biodiversity conservation exist for all energy technologies, and in BC they are currently smallest for wind energy: low GHG emissions, low-moderate overlap with top conservation priorities, and competitive energy cost.
View Article and Find Full Text PDFBackground: The Metabolic Theory of Ecology (MTE) predicts that gestation duration, lactation duration, and their sum, total development time, are constrained by mass-specific basal metabolic rate such that they should scale with body mass with an exponent of 0.25. However, tests of the MTE's predictions have yielded mixed results.
View Article and Find Full Text PDFGestation duration and lactation duration are usually treated as independently evolving traits in primates, but the metabolic theory of ecology (MTE) suggests both durations should be determined by metabolic rate. We used phylogenetic generalized least-squares linear regression to test these different perspectives. We found that the allometries of the durations are divergent from each other and different from the scaling exponent predicted by the MTE (0.
View Article and Find Full Text PDF