Stress-related mental disorders have become increasingly prevalent, thus endangering mental health worldwide. Exploring stress-associated brain alterations is vital for understanding the possible neurobiological mechanisms underlying these changes. Based on existing evidence, the brain endogenous cannabinoid system (ECS) plays a significant role in the stress response, and disruptions in its function are associated with the neurobiology of various stress-related disorders.
View Article and Find Full Text PDFHypoxic ischemic (HI) brain injury that occurs during neonatal period has been correlated with severe neuronal damage, behavioral deficits and infant mortality. Previous evidence indicates that N-acetylcysteine (NAC), a compound with antioxidant action, exerts a potential neuroprotective effect in various neurological disorders including injury induced by brain ischemia. The aim of the present study was to investigate the role of NAC as a potential therapeutic agent in a rat model of neonatal HI brain injury and explore its long-term behavioral effects.
View Article and Find Full Text PDFEnvironmental Enrichment (EE) improves cognitive function and enhances brain plasticity, while chronic stress increases emotionality, impairs learning and memory, and has adverse effects on brain anatomy and biochemistry. We explored the beneficial role of environmental enrichment initiated in adolescence against the negative outcomes of Chronic Unpredictable Stress (CUS) during adulthood on emotional behavior, cognitive function, as well as somatic and neuroendocrine markers in both sexes. Adolescent Wistar rats housed either in enriched or standard housing conditions for 10 weeks.
View Article and Find Full Text PDFThis study aims at investigating whether early stress interacts with brain injury due to neonatal hypoxia-ischemia (HI). To this end, we examined possible changes in synaptophysin (SYN) and brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (mPFC) of maternally separated rats that were subsequently exposed to a HI episode. Rat pups (n = 11) were maternally separated during postnatal days 1 to 6 (3hr/day), while another group was left undisturbed (n = 11).
View Article and Find Full Text PDFExposure to environmental enrichment can beneficially influence the behavior and enhance synaptic plasticity. The aim of the present study was to investigate the mediated effects of environmental enrichment on postnatal stress-associated impact with regard to behavior, stress reactivity as well as synaptic plasticity changes in the dorsal hippocampus. Wistar rat pups were submitted to a 3 h maternal separation (MS) protocol during postnatal days 1-21, while another group was left undisturbed.
View Article and Find Full Text PDFExposure to early-life stress is associated with long-term alterations in brain and behavior, and may aggravate the outcome of neurological insults. This study aimed at investigating the possible interaction between maternal separation, a model of early stress, and subsequent neonatal hypoxia-ischemia on emotional behavior and markers of synaptic plasticity in hippocampus. Therefore, rat pups (N=60) were maternally separated for a prolonged (MS 180min) or a brief (MS 15min) period during the first six postnatal days, while a control group was left undisturbed.
View Article and Find Full Text PDF