In cyanobacteria, the thermal dissipation of excess absorbed energy at the level of the phycobilisome (PBS)-antenna is triggered by absorption of strong blue-green light by the photoactive orange carotenoid protein (OCP). This process known as non-photochemical quenching, whose molecular mechanism remains in many respects unclear, is revealed in vivo as a decrease in phycobilisome fluorescence. In vitro reconstituted system on the interaction of the OCP and the PBS isolated from the cyanobacterium Synechocystis sp.
View Article and Find Full Text PDFPhycobilisomes (PBS) are the major photosynthetic antenna complexes in cyanobacteria and red algae. In the red microalga Galdieria sulphuraria, action spectra measured separately for photosynthetic activities of photosystem I (PSI) and photosystem II (PSII) demonstrate that PBS fraction attributed to PSI is more sensitive to stress conditions and upon nitrogen starvation disappears from the cell earlier than the fraction of PBS coupled to PSII. Preillumination of the cells by actinic far-red light primarily absorbed by PSI caused an increase in the amplitude of the PBS low-temperature fluorescence emission that was accompanied by the decrease in PBS region of the PSI 77 K fluorescence excitation spectrum.
View Article and Find Full Text PDF