Publications by authors named "Everton Almeida"

Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity.

View Article and Find Full Text PDF

Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate.

View Article and Find Full Text PDF

Plants cope with the environment by displaying large phenotypic variation. Two spectra of global plant form and function have been identified: a size spectrum from small to tall species with increasing stem tissue density, leaf size, and seed mass; a leaf economics spectrum reflecting slow to fast returns on investments in leaf nutrients and carbon. When species assemble to communities it is assumed that these spectra are filtered by the environment to produce community level functional composition.

View Article and Find Full Text PDF

Understanding how the traits of lineages are related to diversification is key for elucidating the origin of variation in species richness. Here, we test whether traits are related to species richness among lineages of trees from all major biogeographical settings of the lowland wet tropics. We explore whether variation in mortality rate, breeding system and maximum diameter are related to species richness, either directly or via associations with range size, among 463 genera that contain wet tropical forest trees.

View Article and Find Full Text PDF

Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.

View Article and Find Full Text PDF
Article Synopsis
  • Amazonia's floodplain system is the largest and most biodiverse, but our understanding of its forest species and their unique roles is still limited, especially as changing flood patterns impact these communities.
  • About one-sixth of the tree diversity in Amazonia is specifically adapted to live in floodplain environments, indicating a significant ecological specialization within these forests.
  • The study emphasizes that the unique composition of floodplain forests is influenced by regional flooding patterns, highlighting the necessity of maintaining overall hydrological health to ensure the survival of Amazon's tree diversity and its essential ecosystem functions.
View Article and Find Full Text PDF

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness.

View Article and Find Full Text PDF

Tropical forests face increasing climate risk, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]) and hydraulic safety margins (for example, HSM) are important predictors of drought-induced mortality risk, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation.

View Article and Find Full Text PDF

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies.

View Article and Find Full Text PDF

The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the uncertainty in how tropical forests' carbon storage responds to climate change, particularly the effects of long-term drying and warming.
  • Analysis of 590 permanent plots across the tropics finds that maximum temperature significantly reduces aboveground biomass, affecting carbon storage more in hotter forests.
  • The results indicate that tropical forests have greater resilience to temperature changes than short-term studies suggest, emphasizing the need for forest protection and climate stabilization for long-term adaptation.
View Article and Find Full Text PDF

Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years.

View Article and Find Full Text PDF

Purpose: To report a case of a good visual outcome in a patient with bilateral multifocal syphilitic chorioretinitis, despite the late diagnosis.

Methods: Ophthalmologic examination, multimodal imaging, including fundus photography, angiography, and optical coherence tomography.

Results: The authors describe a 47-year-old heterosexual man with a bilateral multifocal syphilitic chorioretinitis that was lately diagnosed and despite that had a good visual outcome.

View Article and Find Full Text PDF

Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified.

View Article and Find Full Text PDF

While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits.

View Article and Find Full Text PDF