Cytogenet Genome Res
November 2023
Chromosome 2p (chr2p) duplication, also known as trisomy 2p, is a rare chromosome abnormality associated with developmental delay, intellectual disability, behavioral problems, and distinctive facial features. Most of the reported cases involving trisomy 2p include additional copy number variants (CNVs) in other regions of the genome and are usually small in size. Little is known about the clinical outcomes of large duplications of chr2p as the sole cytogenetic abnormality.
View Article and Find Full Text PDFSplit hand/foot malformation (SHFM) is a rare limb abnormality with clefting of the fingers and/or toes. For many individuals, the genetic etiology is unknown. Through whole-exome and targeted sequencing, we detected three novel variants in a gene encoding a transcription factor, PRDM1, that arose de novo in families with SHFM or segregated with the phenotype.
View Article and Find Full Text PDFMosaic variants in the PIK3CA gene, encoding the catalytic subunit of phosphoinositide 3-kinase (PI3K), produce constitutive PI3K activation, which causes PIK3CA-related overgrowth spectrum disorders. To date, fewer than 20 patients have been described with germline alterations in PIK3CA. In this study, we describe three unrelated individuals with overgrowth and germline PIK3CA variants.
View Article and Find Full Text PDFPurpose: Witteveen-Kolk syndrome (WITKOS) is a rare, autosomal dominant neurodevelopmental disorder caused by heterozygous loss-of-function alterations in the SIN3A gene. WITKOS has variable expressivity that commonly overlaps with other neurodevelopmental disorders. In this study, we characterized a distinct DNA methylation epigenetic signature (episignature) distinguishing WITKOS from unaffected individuals as well as individuals with other neurodevelopmental disorders with episignatures and described 9 previously unpublished individuals with SIN3A haploinsufficiency.
View Article and Find Full Text PDFRett (RTT) syndrome, a neurodevelopmental disorder caused by pathogenic variation in the MECP2 gene, is characterized by developmental regression, loss of purposeful hand movements, stereotypic hand movements, abnormal gait, and loss of spoken language. Due to the X-linked inheritance pattern, RTT is typically limited to females. Recent studies revealed somatic mosaicism in MECP2 in male patients with RTT-like phenotypes.
View Article and Find Full Text PDFWnt signaling is essential for normal development and is a therapeutic target in cancer. The enzyme PORCN, or porcupine, is a membrane-bound O-acyltransferase (MBOAT) that is required for the post-translational modification of all Wnts, adding an essential mono-unsaturated palmitoleic acid to a serine on the tip of Wnt hairpin 2. Inherited mutations in PORCN cause focal dermal hypoplasia, and therapeutic inhibition of PORCN slows the growth of Wnt-dependent cancers.
View Article and Find Full Text PDFPurpose: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.
Methods: The clinical and genetic information were collected through GeneMatcher collaboration.
More than 50 individuals with activating variants in the receptor tyrosine kinase PDGFRB have been reported, separated based on clinical features into solitary myofibromas, infantile myofibromatosis, Penttinen syndrome with premature aging and osteopenia, Kosaki overgrowth syndrome, and fusiform aneurysms. Despite their descriptions as distinct clinical entities, review of previous reports demonstrates substantial phenotypic overlap. We present a case series of 12 patients with activating variants in PDGFRB and review of the literature.
View Article and Find Full Text PDFBackground: Microdeletions of the MEF2C gene are linked to a syndromic form of autism termed MEF2C haploinsufficiency syndrome (MCHS). MEF2C hypofunction in neurons is presumed to underlie most of the symptoms of MCHS. However, it is unclear in which cell populations MEF2C functions to regulate neurotypical development.
View Article and Find Full Text PDFThe bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved in chromatin remodeling. Loss of BAZ2B function has been postulated to cause neurodevelopmental disorders. To determine whether BAZ2B deficiency is likely to contribute to the pathogenesis of these disorders, we performed bioinformatics analyses that demonstrated a high level of functional convergence during fetal cortical development between BAZ2B and genes known to cause autism spectrum disorder (ASD) and neurodevelopmental disorder.
View Article and Find Full Text PDFCerebellar malformations are diverse congenital anomalies frequently associated with developmental disability. Although genetic and prenatal non-genetic causes have been described, no systematic analysis has been performed. Here, we present a large-exome sequencing study of Dandy-Walker malformation (DWM) and cerebellar hypoplasia (CBLH).
View Article and Find Full Text PDFThe underpinnings of mild to moderate neurodevelopmental delay remain elusive, often leading to late diagnosis and interventions. Here, we present data on exome and genome sequencing as well as array analysis of 13 individuals that point to pathogenic, heterozygous, mostly de novo variants in WDFY3 (significant de novo enrichment P = 0.003) as a monogenic cause of mild and non-specific neurodevelopmental delay.
View Article and Find Full Text PDFBackground: ADNP syndrome is a rare Mendelian disorder characterized by global developmental delay, intellectual disability, and autism. It is caused by truncating mutations in ADNP, which is involved in chromatin regulation. We hypothesized that the disruption of chromatin regulation might result in specific DNA methylation patterns that could be used in the molecular diagnosis of ADNP syndrome.
View Article and Find Full Text PDFRIT1 oncoproteins have emerged as an etiologic factor in Noonan syndrome and cancer. Despite the resemblance of RIT1 to other members of the Ras small guanosine triphosphatases (GTPases), mutations affecting RIT1 are not found in the classic hotspots but rather in a region near the switch II domain of the protein. We used an isogenic germline knock-in mouse model to study the effects of RIT1 mutation at the organismal level, which resulted in a phenotype resembling Noonan syndrome.
View Article and Find Full Text PDFGolgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) are related heterotetrameric complexes that associate with the cytosolic face of the trans-Golgi network and recycling endosomes, respectively. At these locations, GARP and EARP function to promote the fusion of endosome-derived transport carriers with their corresponding compartments. GARP and EARP share three subunits, VPS51, VPS52 and VPS53, and each has an additional complex-specific subunit, VPS54 or VPS50, respectively.
View Article and Find Full Text PDFCornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in five genes-NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies.
View Article and Find Full Text PDFThe abundantly expressed calcium/calmodulin-dependent protein kinase II (CAMK2), alpha (CAMK2A), and beta (CAMK2B) isoforms are essential for learning and memory formation. Recently, a de novo candidate mutation (p.Arg292Pro) in the gamma isoform of CAMK2 (CAMK2G) was identified in a patient with severe intellectual disability (ID), but the mechanism(s) by which this mutation causes ID is unknown.
View Article and Find Full Text PDFPurpose: To characterize the molecular genetics of autosomal recessive Noonan syndrome.
Methods: Families underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis.
Background: Johanson-Blizzard syndrome (JBS, MIM #243800) is a very rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency, nasal wing hypoplasia, hypodontia, and other abnormalities. JBS is caused by mutations of the UBR1 gene (MIM *605981), encoding a ubiquitin ligase of the N-end rule pathway.
Methods: Molecular findings in a total of 65 unrelated patients with a clinical diagnosis of JBS who were previously screened for UBR1 mutations by Sanger sequencing were reviewed and cases lacking a disease-causing UBR1 mutation on either one or both alleles were included in this study.
Background: Spinocerebellar ataxia type 29 (SCA29) is an autosomal dominant, non-progressive cerebellar ataxia characterized by infantile-onset hypotonia, gross motor delay and cognitive impairment. Affected individuals exhibit cerebellar dysfunction and often have cerebellar atrophy on neuroimaging. Recently, missense mutations in ITPR1 were determined to be responsible.
View Article and Find Full Text PDFExpert Opin Orphan Drugs
October 2016
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that primarily affects females, typically resulting in a period of developmental regression in early childhood followed by stabilization and severe chronic cognitive, behavioral, and physical disability. No known treatment exists beyond symptomatic management, and while insights into the genetic cause, pathophysiology, neurobiology, and natural history of RTT have been gained, many challenges remain. Based on a comprehensive survey of the primary literature on RTT, this article describes and comments upon the general and unique features of the disorder, genetic and neurobiological bases of drug development, and the history of clinical trials in RTT, with an emphasis on drug trial design, outcome measures, and implementation.
View Article and Find Full Text PDF