Adult mammalian synovial joints have limited regenerative capacity, where injuries heal with mechanically inferior fibrotic tissues. Here we developed a unilateral whole-joint resection model in adult zebrafish to advance our understanding of how to stimulate regrowth of native synovial joint tissues. Using a combination of microCT, histological, live imaging, and single-cell RNA sequencing (scRNAseq) approaches after complete removal of all joint tissues, we find de novo regeneration of articular cartilage, ligament, and synovium into a functional joint.
View Article and Find Full Text PDFCorrection of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame.
View Article and Find Full Text PDF