African swine fever virus represents a significant reemerging threat to livestock populations, as its incidence and geographic distribution have surged over the past decade in Europe, Asia, and Caribbean, resulting in substantial socio-economic burdens and adverse effects on animal health and welfare. In a previous report, we described the protective properties of our newly thermo-attenuated strain (ASFV-989) in pigs against an experimental infection of its parental Georgia 2007/1 virulent strain. In this new study, our objective was to characterize the molecular mechanisms underlying the attenuation of ASFV-989.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a contagious viral disease of suids that induces high mortality in domestic pigs and wild boars. Given the current spread of ASF, the development of a vaccine is a priority. During an attempt to inactivate the Georgia 2007/1 strain via heat treatment, we fortuitously generated an attenuated strain called ASFV-989.
View Article and Find Full Text PDFBackground: Several species of soft ticks in genus Ornithodoros are known vectors and reservoirs of African swine fever virus (ASFV). However, the underlying mechanisms of vector competence for ASFV across Ornithodoros species remain to be fully understood. To that end, this study compared ASFV replication and dissemination as well as virus vertical transmission to descendants between Ornithodoros moubata, O.
View Article and Find Full Text PDFHere, we report the coding-complete genome sequence of African swine fever (ASF) virus strain Liv13/33, isolated from experimentally infected pigs and ticks. The 11 sequences that we obtained harbored no notable differences to each other, and all of them were closely related to the genome sequence of the Mkuzi 1979 strain of genotype I.
View Article and Find Full Text PDFAfrican swine fever is a highly lethal hemorrhagic fever of , threatening pig production globally. can be infected by different ways like ingestion of contaminated feed, direct contact with infected animals or fomites, and biting by infected soft tick bites. As already described, European soft ticks ( and ) were not able to transmit African swine fever virus by biting pigs although these ticks maintained the infectious virus during several months; therefore, the possibility for pigs to become infected through the ingestion of infected ticks was questioned but not already explored.
View Article and Find Full Text PDFsoft ticks are the only known vector and reservoir of the African swine fever virus, a major lethal infectious disease of . The co-feeding event for virus transmission and maintenance among soft tick populations has been poorly documented. We infected , a known tick vector in Africa, with an African swine fever virus strain originated in Africa, to test its ability to infect through co-feeding on domestic pigs.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a lethal hemorrhagic disease in domestic pigs and wild suids caused by African swine fever virus (ASFV), which threatens the swine industry globally. In its native African enzootic foci, ASFV is naturally circulating between soft ticks of the genus Ornithodoros, especially in the O. moubata group, and wild reservoir suids, such as warthogs (Phacochoerus spp.
View Article and Find Full Text PDFAfrican swine fever is a haemorrhagic disease in pig production that can have disastrous financial consequences for farming. No vaccines are currently available and animal slaughtering or area zoning to restrict risk-related movements are the only effective measures to prevent the spread of the disease. Ornithodoros soft ticks are known to transmit the African swine fever virus (ASFV) to pigs in farms, following the natural epidemiologic cycle of the virus.
View Article and Find Full Text PDFUnlabelled: African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8(+) T cells in blood.
View Article and Find Full Text PDFModulation of the expression of chemokines and chemokine receptors in whole blood was compared following infection of pigs with high and low virulence isolates of African swine fever virus. Levels of mRNAs for CCL2, CCL3L1, CCL4, CXCL10, CCR1 and CCR5 were significantly increased in at least one time point following infection in two experiments and CCL5, CCR9 and CXCR4 mRNA were significantly increased in one of the experiments. The results showed that greatest fold increases in mRNAs for CXCL10 and CCL2 were observed following infection of pigs.
View Article and Find Full Text PDFA real-time polymerase chain reaction (PCR) assay for the rapid detection of African swine fever virus (ASFV), multiplexed for simultaneous detection of swine beta-actin as an endogenous control, has been developed and validated by four National Reference Laboratories of the European Union for African swine fever (ASF) including the European Union Reference Laboratory. Primers and a TaqMan(®) probe specific for ASFV were selected from conserved regions of the p72 gene. The limit of detection of the new real-time PCR assay is 5.
View Article and Find Full Text PDFAfrican swine fever (ASF) is an acute haemorrhagic disease of domestic pigs for which there is currently no vaccine. We showed that experimental immunisation of pigs with the non-virulent OURT88/3 genotype I isolate from Portugal followed by the closely related virulent OURT88/1 genotype I isolate could confer protection against challenge with virulent isolates from Africa including the genotype I Benin 97/1 isolate and genotype X Uganda 1965 isolate. This immunisation strategy protected most pigs challenged with either Benin or Uganda from both disease and viraemia.
View Article and Find Full Text PDFAn increasing demand in livestock animal husbandry for intervention or emergency vaccination strategies requires a rapid onset of protection linked to prevention of infectious agent spread. Using the new recombinant parapoxvirus (PPV) Orf virus (ORFV) as a vaccine expressing the CSFV E2 glycoprotein we demonstrate that a single intra-muscular application confers solid protection. In the prime only concept, multi-site application of the vector vaccine turned out to be superior to single-site application as no pyrexia occurred after virulent CSFV challenge and CSFV neutralizing serum antibodies regularly were detectable before challenge.
View Article and Find Full Text PDFA better understanding of cell-mediated immune responses to classical swine fever virus (CSFV) is essential for the future development of improved vaccines. We analyzed the generation of cell-mediated and humoral immune responses in d/d histocompatible pigs following CSFV infection or vaccination. Viral infection induced high T cell responses with high primary and secondary CTL activity correlated with high IFN-gamma production, whereas vaccination with a live vaccine followed by infection mainly induced neutralizing antibody but low cell-mediated responses.
View Article and Find Full Text PDF