Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) constitute a promising therapy for myocardial infarction (MI). The lack of an effective immunosuppressive regimen, combined with single-cell transplantations, results in suboptimal outcomes, such as poor engraftment and compromised therapeutic efficacy. This study aimed to confirm the increased retention of hiPSC-CMs microtissues (CMTs) over single-cell grafts.
View Article and Find Full Text PDFNLRP3-inflammasome-mediated signaling is thought to significantly contribute to the extent of myocardial damage after myocardial infarction (MI). The purpose of this study was to investigate the effects of the NLRP3-inflammasome inhibitor IZD334 on cardiac damage in a pig model of myocardial infarction. Prior to in vivo testing, in vitro, porcine peripheral blood mononuclear cells and whole blood were treated with increasing dosages of IZD334, a novel NLRP3-inflammasome inhibitor, and were stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP).
View Article and Find Full Text PDFIschemia-reperfusion and cardiac remodeling is associated with cardiomyocyte death, excessive fibrosis formation, and functional decline, eventually resulting in heart failure (HF). Glucagon-like peptide (GLP)-1 agonists are reported to reduce apoptosis and myocardial infarct size after ischemia-reperfusion. Moreover, mineralocorticoid receptor antagonists (MRAs) have been described to reduce reactive fibrosis and improve cardiac function.
View Article and Find Full Text PDFCardiovascular disease (CVD) remains the leading cause of mortality and morbidity worldwide. Atherosclerosis is responsible for the majority of cardiovascular disorders with inflammation as one of its driving processes. The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, responsible for the release of the pro-inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18), has been studied extensively and showed to play a pivotal role in the progression of atherosclerosis, coronary artery disease (CAD), and myocardial ischemia reperfusion (I/R) injury.
View Article and Find Full Text PDFVarious cell-based therapies are currently investigated in an attempt to tackle the high morbidity and mortality associated with heart failure. The need for these therapies to move towards the clinic is pressing. Therefore, preclinical large animal studies that use non-autologous cells are needed to evaluate their potential.
View Article and Find Full Text PDFStem cell antigen 1-positive (SCA1) cells (SPCs) have been investigated in cell-based cardiac repair and pharmacological research, although improved cardiac function after injection has been variable and the mode of action remains unclear. Circadian (24-hr) rhythms are biorhythms regulated by molecular clocks that play an important role in (patho)physiology. Here, we describe (1) the presence of a molecular circadian clock in SPCs and (2) circadian rhythmicity in SPC function.
View Article and Find Full Text PDF