Publications by authors named "Evelyne Chavanne"

Xenobiotic metabolizing enzymes and other proteins, including odorant-binding proteins located in the nasal epithelium and mucus, participate in a series of processes modulating the concentration of odorants in the environment of olfactory receptors (ORs) and finely impact odor perception. These enzymes and transporters are thought to participate in odorant degradation or transport. Odorant biotransformation results in 1) changes in the odorant quantity up to their clearance and the termination of signaling and 2) the formation of new odorant stimuli (metabolites).

View Article and Find Full Text PDF
Article Synopsis
  • The olfactory epithelium is constantly exposed to various chemicals, including odorants, and enzymes around olfactory receptors are crucial for detecting these smells.
  • Recent research shows that mammalian enzymes like cytochrome P450, esterases, and glutathione transferases (GSTs) help clear odorants, maintaining sensitivity to them.
  • Using diverse techniques, studies indicate that GSTs are key players in the rat olfactory process, with findings of GSTs in nasal mucus and their significant role in modulating odorant availability for receptor detection.
View Article and Find Full Text PDF

The data presented in this article are related to the research article entitled "Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification." (Gonzalez et al., 2018) [1].

View Article and Find Full Text PDF

Glutathione transferases (GSTs) are ubiquitous key enzymes that catalyse the conjugation of glutathione to xenobiotic compounds in the detoxification process. GSTs have been proposed to play a dual role in the signal termination of insect chemodetection by modifying odorant and tasting molecules and by protecting the chemosensory system. Among the 40 GSTs identified in Drosophila melanogaster, the Delta and Epsilon groups are insect-specific.

View Article and Find Full Text PDF

The human inducible heat shock protein 70 (hHsp70), which is involved in several major pathologies, including neurodegenerative disorders and cancer, is a key molecular chaperone and contributes to the proper protein folding and maintenance of a large number of protein structures. Despite its role in disease, the current structural knowledge of hHsp70 is almost exclusively based on its Escherichia coli homolog, DnaK, even though these two proteins only share ~50 % amino acid identity. For the first time, we describe a complete heterologous production and purification strategy that allowed us to obtain a large amount of soluble, full-length, and non-tagged hHsp70.

View Article and Find Full Text PDF