Publications by authors named "Evelyne Cassar-Lajeunesse"

Objective: The liver-derived circulating PCSK9 enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes. PCSK9 inhibition or silencing is presently used in clinics worldwide to reduce LDL-cholesterol, resulting in lower incidence of cardiovascular disease and possibly cancer/metastasis. The mechanism by which the PCSK9-LDLR complex is sorted to degradation compartments is not fully understood.

View Article and Find Full Text PDF

Aldose reductase (ALR2) is the enzyme in charge of developing cellular toxicity caused by diabetic hyperglycemia, which in turn leads to the generation of reactive oxygen species triggering oxidative stress. Therefore, inhibiting ALR2 while pursuing a concomitant anti-oxidant activity through dual-acting agents is now recognized as the gold standard treatment for preventing or at least delaying the progression of diabetic complications. Herein we describe a novel series of ()-benzaldehyde -benzyl oximes , , , and as ALR2 inhibitors endowed with anti-oxidant properties.

View Article and Find Full Text PDF

Activity-based probes enable discrimination between the active enzyme and its inactive or inactivated counterparts. Since metalloproteases catalysis is non-covalent, activity-based probes targeting them have been systematically developed by decorating reversible inhibitors with photo-crosslinkers. By exploiting two types of ligand-guided chemistry, we identified novel activity-based probes capable of covalently modifying the active site of matrix metalloproteases (MMPs) without any external trigger.

View Article and Find Full Text PDF

The most exploited strategy to develop potent zinc-metalloprotease inhibitors relies on a core zinc chelator and a peptidic or nonpeptidic scaffold that provides supplementary interactions for optimized potency and selectivity. Applied to matrix metalloproteases (MMPs) with highly conserved catalytic domains, this strategy failed to identify inhibitors with the desired selectivity profiles. To question the precise role of the zinc-binding group (ZBG), we have carried out a study on MMP-12 inhibitors with a common peptidic core but different ZBGs.

View Article and Find Full Text PDF

The molecular determinants responsible for the potency of the RXP470.1 phosphinic peptide inhibitor toward matrix metalloprotease-12 (MMP-12) remain elusive. To address this issue, structure-activity study, X-ray crystallography, and isothermal titration calorimetry (ITC) experiments were performed.

View Article and Find Full Text PDF

Matrix metalloproteases (MMPs) have attracted considerable attention as critical mediators of pathological tissue remodeling processes. However it remains an unresolved challenge to detect their active forms in biological samples. To prove the efficacy of a recently developed MMP activity-based probe, we examined the content in MMP active forms of bronchoalveolar lavage fluids (BALf) from male C57BL/6 mice exposed to ultrafine carbon black nanoparticles, a model of chronic obstructive pulmonary disease.

View Article and Find Full Text PDF

A photoaffinity probe based on the scaffold of a potent broad-spectrum phosphinic peptide inhibitor of matrix metalloproteinases (MMPs) has been developed. A photolabile diazirine group for covalent modification of MMP active forms was incorporated at the P(1) ' position, and a tritium radioactive label for the sensitive detection of MMP covalent adducts by radioimaging was attached. The probe was characterized on seven catalytic domains of human MMPs (MMP-2, -3, -8, -9, -12, -13 and -14) and was found to display nanomolar affinities towards this set of MMPs, covalently modifying them with crosslinking yields varying from 12 to 58 %, thus leading to highly sensitive detection of these MMPs.

View Article and Find Full Text PDF

A series of pseudo-peptides with general formula X-l-Glu-NH(2) (with X corresponding to an acyl moiety with a long aryl-alkyl side chain) have been synthesized, evaluated as inhibitors of matrix metalloproteases (MMPs), and found to display remarkable nanomolar affinity. The loss in potency associated with a substitution of the P(2)' l-glutamate by a l-glutamine corroborates the importance of a carboxylate at this position. The binding mode of some of these inhibitors was characterized in solution and by x-ray crystallography in complex with various MMPs.

View Article and Find Full Text PDF