DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens.
View Article and Find Full Text PDFLower respiratory tract infections caused by Streptococcus pneumoniae (Spn) are a leading cause of death globally. Here we investigate the bronchial epithelial cellular response to Spn infection on a transcriptomic, proteomic and metabolic level. We found the NAD salvage pathway to be dysregulated upon infection in a cell line model, primary human lung tissue and in vivo in rodents, leading to a reduced production of NAD.
View Article and Find Full Text PDFBackground: Lung infections caused by Streptococcus pneumonia are a global leading cause of death. The reactive oxygen species HO is one of the virulence factors of Streptococcus pneumoniae. The Golgi apparatus is essential for the inflammatory response of a eukaryotic cell.
View Article and Find Full Text PDFVascular pathologies, such as thrombosis or atherosclerosis, are leading causes of death worldwide and are strongly associated with the dysfunction of vascular endothelial cells. In this context, the extracellular endonuclease Ribonuclease 1 (RNase1) acts as an essential protective factor in regulation and maintenance of vascular homeostasis. However, long-term inflammation causes strong repression of RNase1 expression, thereby promoting endothelial cell dysfunction.
View Article and Find Full Text PDFInfections of the lung are among the leading causes of death worldwide. Despite the preactivation of innate defense programs during viral infection, secondary bacterial infection substantially elevates morbidity and mortality rates. Particularly problematic are co-infections with influenza A virus (IAV) and the major bacterial pathogen Streptococcus pneumoniae.
View Article and Find Full Text PDFThe nucleotide-binding oligomerization domain-containing proteins (NOD) 1 and 2 are mammalian cytosolic pattern recognition receptors sensing bacterial peptidoglycan fragments in order to initiate cytokine expression and pathogen host defense. Since endothelial cells are relevant cells for pathogen recognition at the blood/tissue interface, we here analyzed the role of NOD1- and NOD2-dependently expressed microRNAs (miRNAs, miR) for cytokine regulation in murine pulmonary endothelial cells. The induction of inflammatory cytokines in response to NOD1 and NOD2 was confirmed by increased expression of tumour necrosis factor (Tnf)-α and interleukin (Il)-6.
View Article and Find Full Text PDFLower respiratory tract infections are among the most common causes of death worldwide. Main pathogens leading to these severe infections are viruses and gram-positive bacteria that activate toll-like receptor (TLR)-mediated immune responses via pathogen-associated molecular patterns. One protective factor induced during infection is Chitinase-3-like 1 (CHI3L1), which exerts various functions, e.
View Article and Find Full Text PDFRibonuclease 1 (RNase1) is a circulating extracellular endonuclease that regulates the vascular homeostasis of extracellular RNA and acts as a vessel- and tissue-protective enzyme. Upon long-term inflammation, high amounts of proinflammatory cytokines affect endothelial cell (EC) function by down-regulation of RNase1. Here, we investigated the transcriptional regulation of RNase1 upon inflammation in HUVECs.
View Article and Find Full Text PDFLong-distance trafficking of membranous structures along the cytoskeleton is crucial for secretion and endocytosis in eukaryotes. Molecular motors are transporting both secretory and endocytic vesicles along polarized microtubules. Here, we review the transport mechanism and biological function of a distinct subset of large vesicles marked by the G-protein Rab5a in the model microorganism Ustilago maydis.
View Article and Find Full Text PDFMicrotubule-dependent trafficking is essential in moving mRNAs over long distances. This transport mechanism regulates important cellular events such as determining polarity and local protein secretion. Key examples are developmental and neuronal processes studied in Drosophila melanogaster, Xenopus laevis as well as in mammalian cells.
View Article and Find Full Text PDFThe grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR) system and heterodimerising transcription factors.
View Article and Find Full Text PDFThe maize pathogen Ustilago maydis has to undergo various morphological transitions for the completion of its sexual life cycle. For example, haploid cells respond to pheromone by forming conjugation tubes that fuse at their tips. The resulting dikaryon grows filamentously, expanding rapidly at the apex and inserting retraction septa at the basal pole.
View Article and Find Full Text PDFCurr Opin Microbiol
December 2010
The corn pathogen Ustilago maydis relies on defined developmental programs to regulate morphological switches during the infection process. Research on RNA-binding proteins has demonstrated the substantial contribution of posttranscriptional control in regulating growth, morphology and pathogenicity. In particular, functional analysis of the two sequence-specific RNA-binding proteins Khd4 and Rrm4 revealed the importance of regulated mRNA stability and transport, respectively.
View Article and Find Full Text PDFRNA-binding proteins constitute key factors of the post-transcriptional machinery. These regulatory proteins recognize specific elements within target transcripts to promote, for example, maturation, translation, or stability of mRNAs. In Ustilago maydis, evidence is accumulating that post-transcriptional processes are important to determine pathogenicity.
View Article and Find Full Text PDFEukaryotic gene expression begins with transcription and maturation of mRNAs in the nucleus and ends with their translation and degradation in the cytoplasm. Here, we present an inventory of the posttranscriptional machinery of Ustilago maydis that is based on the recently sequenced genome and its comprehensive manual annotation. We used the detailed knowledge available for Saccharomyces cerevisiae and higher eukaryotes to predict posttranscriptional components in this plant pathogen.
View Article and Find Full Text PDFUstilago maydis causes smut disease on corn. Successful infection depends on a number of morphological transitions, such as pheromone-dependent formation of conjugation tubes and the switch to filamentous dikaryotic growth, as well as different types of mycelial structures during growth within the host plant. In order to address the involvement of RNA-binding proteins during this developmental program, we identified 27 open reading frames from the genome sequence encoding potential RNA-binding proteins.
View Article and Find Full Text PDF