Patient-derived or genomically modified human induced pluripotent stem cells (iPSCs) offer the opportunity to study neurodevelopmental and neurodegenerative disorders. Overexpression of certain neurogenic transcription factors (TFs) in iPSCs can induce efficient differentiation into homogeneous populations of the disease-relevant neuronal cell types. Here we provide protocols for genomic manipulations of iPSCs by CRISPR/Cas9.
View Article and Find Full Text PDFThe widespread application of human stem-cell-derived neurons for functional studies is impeded by complicated differentiation protocols, immaturity, and deficient optogene expression as stem cells frequently lose transgene expression over time. Here we report a simple but precise Cre-loxP-based strategy for generating conditional, and thereby stable, optogenetic human stem-cell lines. These cells can be easily and efficiently differentiated into functional neurons, and optogene expression can be triggered by administering Cre protein to the cultures.
View Article and Find Full Text PDFHyperfunction of the mTORC1 pathway has been associated with idiopathic and syndromic forms of autism spectrum disorder (ASD), including tuberous sclerosis, caused by loss of either TSC1 or TSC2. It remains largely unknown how developmental processes and biochemical signaling affected by mTORC1 dysregulation contribute to human neuronal dysfunction. Here, we have characterized multiple stages of neurogenesis and synapse formation in human neurons derived from TSC2-deleted pluripotent stem cells.
View Article and Find Full Text PDF