Publications by authors named "Evelyn S Krull"

Whilst largely considered an inert material, biochar has been documented to contain a small yet significant fraction of microbially available labile organic carbon (C). Biochar addition to soil has also been reported to alter soil microbial community structure, and to both stimulate and retard the decomposition of native soil organic matter (SOM). We conducted a short-term incubation experiment using two (13)C-labelled biochars produced from wheat or eucalypt shoots, which were incorporated in an aridic arenosol to examine the fate of the labile fraction of biochar-C through the microbial community.

View Article and Find Full Text PDF

Determining the source and flow of carbon, energy and nutrients through food webs is essential for understanding ecological connectivity and thus determining the impact of management practices on biodiversity. We combined DNA sequencing, microarrays and stable isotope analyses to test whether this approach would allow us to resolve the carbon flows through food webs in a weir pool on the lower Murray River, a highly impacted, complex and regulated ecosystem in southern Australia. We demonstrate that small fish in the Murray River consume a wide range of food items, but that a significant component of carbon and nitrogen entering the food web during dry periods in summer, but not spring, is derived from nonconventional sources other than in-channel primary producers.

View Article and Find Full Text PDF

The effect of a recent vegetation change (<100 years) from C(4) grassland to C(3) woodland in central Queensland, Australia, on soil organic matter (SOM) composition and SOM dynamics has been investigated using a novel coupled thermogravimetry-differential scanning calorimetry-quadrupole.mass spectrometry-isotope ratio mass spectrometry (TG-DSC-QMS-IRMS) system. TG-DSC-QMS-IRMS distinguishes the C isotope composition of discrete SOM pools, showing changes in labile, recalcitrant and refractory carbon in the bulk soil and particle size fractions which track the vegetation changes.

View Article and Find Full Text PDF

This paper reviews current knowledge of soil organic carbon (SOC) dynamics with respect to physical protection, soil moisture and temperature, and recalcitrant carbon fractions (such as charcoal) in predominantly agricultural soils. These factors are discussed within the framework of current soil organic matter models. The importance of soil structure in the stabilisation of organic residues through physical protection has been documented previously in various studies.

View Article and Find Full Text PDF