Due to globally increasing antimicrobial resistance (AMR), it is pivotal to understand factors contributing to antimicrobial use (AMU) to enable development and implementation of AMR-reducing interventions. Therefore, we explored seasonal variations of systemic AMU in food-producing animals in the Netherlands. Dutch surveillance data from January 2013 to December 2018 from cattle, pig, and broiler farms were used.
View Article and Find Full Text PDFUnderstanding antibiotic prescription patterns and non-clinical factors influencing antibiotic use is essential for implementing strategies to promote appropriate antibiotic use. There is, however, limited research exploring these issues with Ecuadorian veterinarians. Therefore, a questionnaire was developed and applied cross-sectionally to veterinarians (n = 173) from two professional organizations to explore the antibiotic prescription patterns and non-clinical factors (e.
View Article and Find Full Text PDFBackground And Aim: Pre-slaughter management and slaughter operations are considered critical factors for animal welfare and meat quality. Previous studies have found poor animal welfare management at municipal slaughterhouses in Ecuador, and little is known about how this affects the microbiological quality of the meat. Therefore, the aim of the study was to analyze the association of the microbiological quality of beef carcasses and animal welfare indicators in a municipal slaughterhouse in Ecuador.
View Article and Find Full Text PDFAvian influenza (AI) is a disease caused by influenza viruses type A that belong to the Orthomyxoviridae family. AI induces high economic losses in poultry production worldwide. Due to a possible outbreak, a national surveillance program was needed.
View Article and Find Full Text PDFBackground: Antimicrobial resistance (AMR) rates may display seasonal variation. However, it is not clear whether this seasonality is influenced by the seasonal variation of infectious diseases, geographical region or differences in antibiotic prescription patterns. Therefore, we assessed the seasonality of AMR rates in respiratory bacteria.
View Article and Find Full Text PDF