In the testis, a subset of spermatogonia retains stem cell potential, while others differentiate to eventually become spermatozoa. This delicate balance must be maintained, as defects can result in testicular cancer or infertility. Currently, little is known about the gene products and signaling pathways directing these critical cell fate decisions.
View Article and Find Full Text PDFIn mammals, most neonatal male germ cells (prospermatogonia) are quiescent and located in the center of the testis cords. In response to an unknown signal, prospermatogonia transition into spermatogonia, reenter the cell cycle, divide, and move to the periphery of the testis cords. In mice, these events occur by 3-4 days postpartum (dpp), which temporally coincides with the onset of retinoic acid (RA) signaling in the neonatal testis.
View Article and Find Full Text PDFIn the testis, F-actin structures are involved in spermatid nuclear remodeling and cytoplasm reduction, maintenance of the blood-testis barrier, support of the spermatogonial stem cell niche, and release of spermatids into the tubular lumen. To gain a better understanding of actin regulation in Sertoli-germ cell interactions, we investigated the expression of the Palladin (Palld) gene, which encodes a widely expressed phosphoprotein that localizes to actin-rich cytoplasmic structures, including focal adhesions, cell-cell junctions, podosomes, and stress fibers, and serves as a molecular scaffold to bundle actin fibers. In germ cells, PALLD was concentrated along the tubulin- and F-actin-containing cytoplasmic manchette that forms adjacent to the elongating spermatid nucleus during spermiogenesis.
View Article and Find Full Text PDF