Hygroscopic hydrogels are emerging as scalable and low-cost sorbents for atmospheric water harvesting, dehumidification, passive cooling, and thermal energy storage. However, devices using these materials still exhibit insufficient performance, partly due to the limited water vapor uptake of the hydrogels. Here, the swelling dynamics of hydrogels in aqueous lithiumchloride solutions, the implications on hydrogel salt loading, and the resulting vapor uptake of the synthesized hydrogel-salt composites are characterized.
View Article and Find Full Text PDFWater vapor sorption is a ubiquitous phenomenon in nature and plays an important role in various applications, including humidity regulation, energy storage, thermal management, and water harvesting. In particular, capturing moisture at elevated temperatures is highly desirable to prevent dehydration and to enlarge the tunability of water uptake. However, owing to the thermodynamic limit of conventional materials, sorbents inevitably tend to capture less water vapor at higher temperatures, impeding their broad applications.
View Article and Find Full Text PDFColloidal self-assembly has attracted significant interest in numerous applications including optics, electrochemistry, thermofluidics, and biomolecule templating. To meet the requirements of these applications, numerous fabrication methods have been developed. However, these are limited to narrow ranges of feature sizes, are incompatible with many substrates, and/or have low scalability, significantly limiting the use of colloidal self-assembly.
View Article and Find Full Text PDFTwo-dimensional (2D) materials have enabled promising applications in modern miniaturized devices. However, device operation may lead to substantial temperature rise and thermal stress, resulting in device failure. To address such thermal challenges, the thermal expansion coefficient (TEC) needs to be well understood.
View Article and Find Full Text PDFBoiling is an effective energy-transfer process with substantial utility in energy applications. Boiling performance is described mainly by the heat-transfer coefficient (HTC) and critical heat flux (CHF). Recent efforts for the simultaneous enhancement of HTC and CHF have been limited by an intrinsic trade-off between them-HTC enhancement requires high nucleation-site density, which can increase bubble coalescence resulting in limited CHF enhancement.
View Article and Find Full Text PDFThermophotovoltaics (TPVs) convert predominantly infrared wavelength light to electricity via the photovoltaic effect, and can enable approaches to energy storage and conversion that use higher temperature heat sources than the turbines that are ubiquitous in electricity production today. Since the first demonstration of 29% efficient TPVs (Fig. 1a) using an integrated back surface reflector and a tungsten emitter at 2,000 °C (ref.
View Article and Find Full Text PDFBubble evolution plays a fundamental role in boiling and gas-evolving electrochemical systems. One key stage is bubble departure, which is traditionally considered to be buoyancy-driven. However, conventional understanding cannot provide the full physical picture, especially for departure events with small bubble sizes commonly observed in water splitting and high heat flux boiling experiments.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2022
We present a surface-engineering approach that turns all liquids highly wetting, including ultra-high surface tension fluids such as mercury. Previously, highly wetting behavior was only possible for intrinsically wetting liquid/material combinations through surface roughening to enable the so-called Wenzel and hemiwicking states, in which liquid fills the surface structures and causes a droplet to exhibit a low contact angle when contacting the surface. Here, we show that roughness made of reentrant structures allows for a metastable hemiwicking state even for nonwetting liquids.
View Article and Find Full Text PDFHygroscopic hydrogels hold significant promise for high-performance atmospheric water harvesting, passive cooling, and thermal management. However, a mechanistic understanding of the sorption kinetics of hygroscopic hydrogels remains elusive, impeding an optimized design and broad adoption. Here, we develop a generalized two-concentration model (TCM) to describe the sorption kinetics of hygroscopic hydrogels, where vapor transport in hydrogel micropores and liquid transport in polymer nanopores are coupled through the sorption at the interface.
View Article and Find Full Text PDFUltra-high vacuum (UHV) is essential to many surface characterization techniques and is often applied with the intention of reducing exposure to airborne contaminants. Surface contamination under UHV is not well-understood, however, and introduces uncertainty in surface elemental characterization or hinders surface-sensitive manufacturing approaches. In this work, we investigated the time-dependent surface composition of gold samples with different initial levels of contamination under UHV over a period of 24 h with both experiments and physical modeling.
View Article and Find Full Text PDFSelf-assembly of artificial opals has garnered significant interest as a facile nanofabrication technique capable of producing highly ordered structures for optical, electrochemical, biomolecular, and thermal applications. In these applications, the optimum opal particle diameter can vary by several orders of magnitude because the properties of the resultant structures depend strongly on the feature size. However, current opal fabrication techniques only produce high-quality structures over a limited range of sphere sizes or require complex processes and equipment.
View Article and Find Full Text PDFAirborne particular matter (PM) pollution is an increasing global issue and alternative sources of filter fibers are now an area of significant focus. Compared with relatively mature hazardous gas treatments, state of the art high-efficiency PM filters still lack thermal decomposition ability for organic PM pollutants, such as soot from coal-fired power plants and waste-combustion incinerators, resulting in frequent replacement, high cost, and second-hand pollution. In this manuscript, we propose a bottom-up synthesis method to make the first all-thermal-catalyst air filter (ATCAF).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
Two-dimensional (2D) materials and their heterogeneous integration have enabled promising electronic and photonic applications. However, significant thermal challenges arise due to numerous van der Waals (vdW) interfaces limiting the dissipation of heat generated in the device. In this work, we investigate the vdW binding effect on heat transport through a MoS-amorphous silica heterostructure.
View Article and Find Full Text PDFStimuli-responsive materials have been lately employed in soft robotics enabling new classes of robots that can emulate biological systems. The untethered operation of soft materials with high power light, magnetic field, and electric field has been previously demonstrated. While electric and magnetic fields can be stimulants for untethered actuation, their rapid decay as a function of distance limits their efficacy for long-range operations.
View Article and Find Full Text PDFBoiling is an essential process in numerous applications including power plants, thermal management, water purification, and steam generation. Previous studies have shown that surfaces with microcavities or biphilic wettability can enhance the efficiency of boiling heat transfer, that is, the heat transfer coefficient (HTC). Surfaces with permeable structures such as micropillar arrays, in contrast, have shown significant enhancement of the critical heat flux (CHF).
View Article and Find Full Text PDFBubble nucleation is ubiquitous in gas evolving reactions that are instrumental for a variety of electrochemical systems. Fundamental understanding of the nucleation process, which is critical to system optimization, remains limited as prior works generally focused on the thermodynamics and have not considered the coupling between surface geometries and different forms of transport in the electrolytes. Here, we establish a comprehensive transport-based model framework to identify the underlying mechanism for bubble nucleation on gas evolving electrodes.
View Article and Find Full Text PDFHydrophobic coatings with low thermal resistance promise a significant enhancement in condensation heat transfer performance by promoting dropwise condensation in applications including power generation, water treatment, and thermal management of high-performance electronics. However, after nearly a century of research, coatings with adequate robustness remain elusive due to the extreme environments within many condensers and strict design requirements needed to achieve enhancement. In this work, we enable long-lasting condensation heat transfer enhancement dropwise condensation by infusing a hydrophobic polymer, Teflon AF, into a porous nanostructured surface.
View Article and Find Full Text PDFEnvironmental scanning electron microscopy (ESEM) is a powerful technique that enables imaging of diverse specimens (e.g., biomaterials, chemical materials, nanomaterials) in a hydrated or native state while simultaneously maintaining micro-to-nanoscale resolution.
View Article and Find Full Text PDFThe simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Water is often considered as the highest performance working fluid for liquid-vapor phase change due to its high thermal conductivity and large enthalpy of vaporization. However, a wide range of industrial systems require using low surface tension liquids where heat transfer enhancement has proved challenging for boiling and evaporation. Here, we enable a new paradigm of phase change heat transfer, which favors high volatility, low surface tension liquids rather than water.
View Article and Find Full Text PDFHeat at intermediate temperatures (120-220 °C) is in significant demand in both industrial and domestic sectors for applications such as water and space heating, steam generation, sterilization, and other industrial processes. Harnessing heat from solar energy at these temperatures, however, requires costly optical and mechanical components to concentrate the dilute solar flux and suppress heat losses. Thus, achieving high temperatures under unconcentrated sunlight remains a technological challenge as well as an opportunity for utilizing solar thermal energy.
View Article and Find Full Text PDFAtomically thin two-dimensional (2D) materials have shown great potential for applications in nanoscale electronic and optical devices. A fundamental property of these 2D flakes that needs to be well-characterized is the thermal expansion coefficient (TEC), which is instrumental to the dry transfer process and thermal management of 2D material-based devices. However, most of the current studies of 2D materials' TEC extensively rely on simulations due to the difficulty of performing experimental measurements on an atomically thin, micron-sized, and optically transparent 2D flake.
View Article and Find Full Text PDF