Publications by authors named "Evelyn Mollocana-Lara"

bioprinting, fabricating tissue-engineered implants directly in a patient, was recently developed to overcome the logistical and clinical limitations of traditional bioprinting. printing reduces the time to treatment, allows for real-time reconstructive adjustments, minimizes transportation challenges, improves adhesion to remnant tissue and ensuing tissue integration, and utilizes the body as a bioreactor. Unfortunately, most printers are frame-based systems with limited working areas that are incompatible with the human body and lack portability.

View Article and Find Full Text PDF

Tissue engineering has emerged as a strategy for producing functional tissues and organs to treat diseases and injuries. Many chronic conditions directly or indirectly affect normal blood vessel functioning, necessary for material exchange and transport through the body and within tissue-engineered constructs. The interest in vascular tissue engineering is due to two reasons: (1) functional grafts can be used to replace diseased blood vessels, and (2) engineering effective vasculature within other engineered tissues enables connection with the host's circulatory system, supporting their survival.

View Article and Find Full Text PDF

Bioprinting facilitates the generation of complex, three-dimensional (3D), cell-based constructs for various applications. Although multiple bioprinting technologies have been developed, extrusion-based systems have become the dominant technology due to the diversity of materials (bioinks) that can be utilized, either individually or in combination. However, each bioink has unique material properties and extrusion characteristics that affect bioprinting utility, accuracy, and precision.

View Article and Find Full Text PDF

Although the study of ribonucleic acid (RNA) therapeutics started decades ago, for many years, this field of research was overshadowed by the growing interest in DNA-based therapies. Nowadays, the role of several types of RNA in cell regulation processes and the development of various diseases have been elucidated, and research in RNA therapeutics is back with force. This short literature review aims to present general aspects of many of the molecules currently used in RNA therapeutics, including in vitro transcribed mRNA (IVT mRNA), antisense oligonucleotides (ASOs), aptamers, small interfering RNAs (siRNAs), and microRNAs (miRNAs).

View Article and Find Full Text PDF