Publications by authors named "Evelyn M Kanter"

Background: Adenosine triphosphate-sensitive potassium (K) channel openers have been found to be cardioprotective in multiple animal models via an unknown mechanism. Mouse models allow genetic manipulation of K channel components for the investigation of this mechanism. Mouse Langendorff models using 30 min of global ischemia are known to induce measurable myocardial infarction and injury.

View Article and Find Full Text PDF

Rationale: Cardiac fibrosis plays a critical role in the pathogenesis of heart failure. Excessive accumulation of extracellular matrix (ECM) resulting from cardiac fibrosis impairs cardiac contractile function and increases arrhythmogenicity. Current treatment options for cardiac fibrosis, however, are limited, and there is a clear need to identify novel mediators of cardiac fibrosis to facilitate the development of better therapeutics.

View Article and Find Full Text PDF

Background: Myocardial, transient, outward currents, , have been shown to play pivotal roles in action potential (AP) repolarization and remodeling in animal models. The properties and contribution of to left ventricular (LV) repolarization in the human heart, however, are poorly defined.

Methods And Results: Whole-cell, voltage-clamp recordings, acquired at physiological (35°C to 37°C) temperatures, from myocytes isolated from the LV of nonfailing human hearts identified 2 distinct transient currents, () and (), with significantly (<0.

View Article and Find Full Text PDF

Background: The adenosine triphosphate-sensitive potassium (K) channel opener diazoxide (DZX) prevents myocyte volume derangement and reduced contractility secondary to stress. K channels are composed of pore-forming (Kir6.1 or Kir6.

View Article and Find Full Text PDF

Background: ATP-sensitive potassium (K(ATP)) channel openers provide cardioprotection in multiple models. Ion flux at an unidentified mitochondrial K(ATP) channel has been proposed as the mechanism. The renal outer medullary kidney potassium channel subunit, potassium inward rectifying (Kir)1.

View Article and Find Full Text PDF

Background: The sarcolemmal adenosine triphosphate-sensitive potassium channel (sK(ATP)), composed primarily of potassium inward rectifier (Kir) 6.2 and sulfonylurea receptor 2A subunits, has been implicated in cardiac myocyte volume regulation during stress; however, it is not involved in cardioprotection by the adenosine triphosphate-sensitive potassium channel (K(ATP)) channel opener diazoxide (7-chloro-3-methyl-1,2,4-benzothiadiazine-1,1-dioxide [DZX]). Paradoxically, the sK(ATP) channel subunit Kir6.

View Article and Find Full Text PDF

Background: Cardiac myocytes demonstrate significant swelling and associated reduced contractility in response to stress that is prevented by the ATP-sensitive potassium channel opener, diazoxide (DZX) via an unknown mechanism. One proposed mechanism of cardioprotection is mitochondrial matrix swelling. To establish the relationship between mitochondrial and cellular volume during stress, this study examined the effect of DZX on mitochondrial volume.

View Article and Find Full Text PDF

Background: The concept that pore-forming Kir6.2 and regulatory SUR2A subunits form cardiac ATP-sensitive potassium (K(ATP)) channels is challenged by recent reports that SUR1 is predominant in mouse atrial K(ATP) channels.

Objective: To assess SUR subunit composition of K(ATP) channels and consequence of K(ATP) activation for action potential duration (APD) in dog hearts.

View Article and Find Full Text PDF

Background: The adenosine triphosphate-sensitive potassium (KATP) channel opener, diazoxide, preserves myocyte volume homeostasis and contractility during stress via an unknown mechanism. Pharmacologic overlap has been suggested between succinate dehydrogenase (SDH) activity and KATP channel modulators. Diazoxide may be cardioprotective due to the inhibition of SDH which may form a portion of the mitochondrial KATP channel.

View Article and Find Full Text PDF

Background: Diazoxide maintains myocyte volume and contractility during stress via an unknown mechanism. The mechanism of action may involve an undefined (genotype unknown) mitochondrial ATP-sensitive potassium channel and is dependent on the ATP-sensitive potassium channel subunit sulfonylurea type 1 receptor (SUR1). The ATP-sensitive potassium channel openers have been shown to inhibit succinate dehydrogenase (SDH) and a gene for a portion of SDH has been found in the SUR intron.

View Article and Find Full Text PDF

Background: The purpose of this investigation was to characterize differential right atrial (RA) and ventricular (RV) molecular changes in Ca(2+)-handling proteins consequent to RV pressure overload and hypertrophy in two common, yet distinct models of pulmonary hypertension: dehydromonocrotaline (DMCT) toxicity and pulmonary artery (PA) banding.

Methods: A total of 18 dogs underwent sternotomy in four groups: (1) DMCT toxicity (n = 5), (2) mild PA banding over 10 wk to match the RV pressure rise with DMCT (n = 5); (3) progressive PA banding to generate severe RV overload (n = 4); and (4) sternotomy only (n = 4).

Results: In the right ventricle, with DMCT, there was no change in sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) or phospholamban (PLB), but we saw a trend toward down-regulation of phosphorylated PLB at serine-16 (p[Ser-16]PLB) (P = 0.

View Article and Find Full Text PDF

Gap junction channels in ventricular myocardium are required for electrical and metabolic coupling between cardiac myocytes and for normal cardiac pump function. Although much is known about expression patterns and remodeling of cardiac connexin(Cx)43, little is known about the less abundant Cx45, which is required for embryonic development and viability, is downregulated in adult hearts, and is pathophysiologically upregulated in human end-stage heart failure. We applied quantitative immunoblotting and immunoprecipitation to native myocardial extracts, immunogold electron microscopy to cardiac tissue and membrane sections, electrophysiological recordings to whole hearts, and high-resolution tandem mass spectrometry to Cx45 fusion protein, and developed two new tools, anti-Cx45 antisera and Cre(+);Cx45 floxed mice, to facilitate characterization of Cx45 in adult mammalian hearts.

View Article and Find Full Text PDF

Connexin43 (Cx43) is a major cardiac gap junction channel protein required for normal electrical and contractile activity. Gap junction channel assembly, function, and turnover are regulated by phosphorylation under both normal and disease conditions. The carboxyl terminus (CT) of Cx43 contains numerous amino acid residues that are phosphorylated by protein kinases.

View Article and Find Full Text PDF

Background: We have recently shown that native murine ventricular fibroblasts express both connexin43 (Cx43) and Cx45, and that the level of Cx43 expression influences intercellular coupling and cell proliferation. Relatively little is known, however, about how myocardial infarction (MI) influences expression of Cx43, or how altered Cx43 expression may affect fibroblast function post-MI. Fibroblasts are critical for infarct healing and post-infarct ventricular remodeling.

View Article and Find Full Text PDF

In addition to mediating cell-to-cell electrical coupling, gap junctions are important in tissue repair, wound healing, and scar formation. The expression and distribution of connexin43 (Cx43), the major gap junction protein expressed in the heart, are altered substantially after myocardial infarction (MI); however, the effects of Cx43 remodeling on wound healing and the attendant ventricular dysfunction are incompletely understood. Cx43-deficient and wild-type mice were subjected to proximal ligation of the anterior descending coronary artery and followed for 6 days or 4 wk to test the hypothesis that reduced expression of Cx43 influences wound healing, fibrosis, and ventricular remodeling after MI.

View Article and Find Full Text PDF

Little is known about connexin expression and function in murine cardiac fibroblasts. The authors isolated native ventricular fibroblasts from adult mice and determined that although they expressed both connexin43 (Cx43) and connexin45 (Cx45), the relative abundance of Cx45 was greater than that of Cx43 in fibroblasts compared to myocytes, and the electrophoretic mobility of both Cx43 and Cx45 differed in fibroblasts and in myocytes. Increasing Cx43 expression by adenoviral infection increased intercellular coupling, whereas decreasing Cx43 expression by genetic ablation decreased coupling.

View Article and Find Full Text PDF

Atrial tissue expresses both connexin 40 (Cx40) and 43 (Cx43) proteins. To assess the relative roles of Cx40 and Cx43 in atrial electrical propagation, we synthesized cultured strands of atrial myocytes derived from mice with genetic deficiency in Cx40 or Cx43 expression and measured propagation velocity (PV) by high-resolution optical mapping of voltage-sensitive dye fluorescence. The amount of Cx40 and/or Cx43 in gap junctions was measured by immunohistochemistry and total or sarcolemmal Cx43 or Cx40 protein by immunoblotting.

View Article and Find Full Text PDF

Introduction: Electrophysiologic heterogeneity across the ventricular wall is a result of differential transmural expression of various ion channel proteins that underlie the different action potential waveforms observed in epicardial, midmyocardial, and endocardial regions. Cardiac connexins mediate cell-to-cell communication, are critical for normal impulse propagation, and play a role in electrophysiologic remodeling in disease states. However, little is known about the transmural distribution of cardiac gap junction proteins.

View Article and Find Full Text PDF

Objective: Adult ventricular myocytes express two gap junction channel proteins: connexin43 (Cx43) and connexin45 (Cx45). Cx43-deficient mice exhibit slow ventricular epicardial conduction, suggesting that Cx43 plays an important role in intercellular coupling in the ventricle. Cx45 is much less abundant than Cx43 in working ventricular myocytes.

View Article and Find Full Text PDF