Publications by authors named "Evelyn Jensen"

Article Synopsis
  • Galapagos giant tortoises, found only in the Galapagos Archipelago, exhibit distinct morphological, behavioral, and genetic traits, prompting debate over their classification as separate species due to recent divergences in their populations.
  • A study using advanced genetic methods on 38 tortoises revealed strong evidence against treating all tortoises as a single species; instead, it suggests a complex with at least 9 to potentially 13 distinct species.
  • The findings highlight varying levels of speciation, with some tortoise groups being further evolved as separate species than others, underscoring the urgency of conservation efforts for threatened island species.
View Article and Find Full Text PDF

Genomic resources have yielded unprecedented insights into ecological and evolutionary processes, not to mention their importance in economic and conservation management of specific organisms. However, the field of macroalgal genomics is hampered by difficulties in the isolation of suitable DNA. Even when DNA that appears high quality by standard metrics has been isolated, such samples may not perform well during the sequencing process.

View Article and Find Full Text PDF

Rapid biodiversity loss threatens many species with extinction. Captive populations of species of conservation concern (such as those housed in zoos and dedicated breeding centres) act as an insurance should wild populations go extinct or need supplemental individuals to boost populations. Limited resources mean that captive populations are almost always small and started from few founding individuals.

View Article and Find Full Text PDF

The deepest marine ecosystem, the hadal zone, hosts endemic biodiversity resulting from geographic isolation and environmental selection pressures. However, the pan-ocean distribution of some fauna challenges the concept that the hadal zone is a series of isolated island-like habitats. Whether this remains true at the population genomic level is untested.

View Article and Find Full Text PDF

Monitoring the evolutionary responses of species to ongoing global climate change is critical for informing conservation. Population genomic studies that use samples from multiple time points ("temporal genomics") are uniquely able to make direct observations of change over time. Consequently, only temporal studies can show genetic erosion or spatiotemporal changes in population structure.

View Article and Find Full Text PDF

Captive breeding programs benefit from genetic analyses that identify relatedness between individuals, assign parentage to offspring, and track levels of genetic diversity. Monitoring these parameters across breeding cycles is critical to the success of a captive breeding program as it allows conservation managers to iteratively evaluate and adjust program structure. However, in practice, genetic tracking of breeding outcomes is rarely conducted.

View Article and Find Full Text PDF

The status of the Fernandina Island Galapagos giant tortoise (Chelonoidis phantasticus) has been a mystery, with the species known from a single specimen collected in 1906. The discovery in 2019 of a female tortoise living on the island provided the opportunity to determine if the species lives on. By sequencing the genomes of both individuals and comparing them to all living species of Galapagos giant tortoises, here we show that the two known Fernandina tortoises are from the same lineage and distinct from all others.

View Article and Find Full Text PDF
Article Synopsis
  • * The Group on Earth Observations Biodiversity Observation Network (GEO BON) developed Essential Biodiversity Variables (EBVs), which are key metrics to standardize biodiversity data and help evaluate geographical distribution and changes over time.
  • * The text focuses on implementing Genetic Composition EBVs, assessing genetic variation within species, and proposes four specific Genetic EBVs while discussing their relevance and the processes needed for effective data generation and archiving.
View Article and Find Full Text PDF

The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands.

View Article and Find Full Text PDF

Although genetic diversity has been recognized as a key component of biodiversity since the first Convention on Biological Diversity (CBD) in 1993, it has rarely been included in conservation policies and regulations. Even less appreciated is the role that ancient and historical DNA (aDNA and hDNA, respectively) could play in unlocking the temporal dimension of genetic diversity, allowing key conservation issues to be resolved, including setting baselines for intraspecies genetic diversity, estimating changes in effective population size (N, and identifying the genealogical continuity of populations. Here, we discuss how genetic information from ancient and historical specimens can play a central role in preserving biodiversity and highlight specific conservation policies that could incorporate such data to help countries meet their CBD obligations.

View Article and Find Full Text PDF

Genetic monitoring using noninvasive samples provides a complement or alternative to traditional population monitoring methods. However, next-generation sequencing approaches to monitoring typically require high quality DNA and the use of noninvasive samples (e.g.

View Article and Find Full Text PDF

Whole genome sequencing provides deep insights into the evolutionary history of a species, including patterns of diversity, signals of selection, and historical demography. When applied to closely related taxa with a wealth of background knowledge, population genomics provides a comparative context for interpreting population genetic summary statistics and comparing empirical results with the expectations of population genetic theory. The Galapagos giant tortoises (Chelonoidis spp.

View Article and Find Full Text PDF

The rapidly emerging field of macrogenetics focuses on analysing publicly accessible genetic datasets from thousands of species to explore large-scale patterns and predictors of intraspecific genetic variation. Facilitated by advances in evolutionary biology, technology, data infrastructure, statistics and open science, macrogenetics addresses core evolutionary hypotheses (such as disentangling environmental and life-history effects on genetic variation) with a global focus. Yet, there are important, often overlooked, limitations to this approach and best practices need to be considered and adopted if macrogenetics is to continue its exciting trajectory and reach its full potential in fields such as biodiversity monitoring and conservation.

View Article and Find Full Text PDF

Millette et al. (Ecology Letters, 2020, 23:55-67) reported no consistent worldwide anthropogenic effects on animal genetic diversity using repurposed mitochondrial DNA sequences. We reexamine data from this study, describe genetic marker and scale limitations which might lead to misinterpretations with conservation implications, and provide advice to improve future macrogenetic studies.

View Article and Find Full Text PDF

Predicting the consequences of environmental changes, including human-mediated climate change on species, requires that we quantify range-wide patterns of genetic diversity and identify the ecological, environmental, and historical factors that have contributed to it. Here, we generate baseline data on polar bear population structure across most Canadian subpopulations ( = 358) using 13,488 genome-wide single nucleotide polymorphisms (SNPs) identified with double-digest restriction site-associated DNA sequencing (ddRAD). Our ddRAD dataset showed three genetic clusters in the sampled Canadian range, congruent with previous studies based on microsatellites across the same regions; however, due to a lack of sampling in Norwegian Bay, we were unable to confirm the existence of a unique cluster in that subpopulation.

View Article and Find Full Text PDF

DNA extracted from fecal samples contains DNA from the focal species, food, bacteria and pathogens. Most DNA quantification methods measure total DNA and cannot differentiate among sources. Despite the desirability of noninvasive fecal sampling for studying wildlife populations, low amounts of focal species DNA make it difficult to use for next-generation sequencing (NGS), where accurate DNA quantification is critical for normalization.

View Article and Find Full Text PDF

Using molecular genetic information to guide population management can improve the sustainability of species in captivity. However, empirical population genetics has not been commonly applied to species management programs in zoos. One limitation may be the availability of genetic resources (e.

View Article and Find Full Text PDF

Population genetic theory related to the consequences of rapid population decline is well-developed, but there are very few empirical studies where sampling was conducted before and after a known bottleneck event. Such knowledge is of particular importance for species restoration, given links between genetic diversity and the probability of long-term persistence. To directly evaluate the relationship between current genetic diversity and past demographic events, we collected genome-wide single nucleotide polymorphism data from prebottleneck historical (c.

View Article and Find Full Text PDF
Article Synopsis
  • Genome-wide assessments provide a more comprehensive view of genetic diversity and support better conservation strategies compared to traditional genetic markers.
  • Galapagos giant tortoises are being studied to apply evolutionary genetics to conservation, especially since their populations have plummeted by 90%.
  • Using advanced sequencing techniques, researchers identified over 26,000 SNPs across 117 tortoises, revealing 12 genetic lineages that correspond with named species and offering insights into species structure and admixture.
View Article and Find Full Text PDF

Empirical population genetic studies generally rely on sampling subsets of the population(s) of interest and of the nuclear or organellar genome targeted, assuming each is representative of the whole. Violations of these assumptions may impact population-level parameter estimation and lead to spurious inferences. Here, we used targeted capture to sequence the full mitochondrial genome from 123 individuals of the Galapagos giant tortoise endemic to Pinzón Island (Chelonoidis duncanensis) sampled at 2 time points pre- and postbottleneck (circa 1906 and 2014) to explicitly assess differences in diversity estimates and demographic reconstructions based on subsets of the mitochondrial genome versus the full sequences and to evaluate potential biases associated with diversity estimates and demographic reconstructions from postbottlenecked samples alone.

View Article and Find Full Text PDF

In the midst of the current biodiversity crisis, conservation efforts might profitably be directed towards ensuring that extinctions do not result in inordinate losses of evolutionary history. Numerous methods have been developed to evaluate the importance of species based on their contribution to total phylogenetic diversity on trees and networks, but existing methods fail to take complementarity into account, and thus cannot identify the best order or subset of taxa to protect. Here, we develop a novel iterative calculation of the heightened evolutionary distinctiveness and globally endangered metric (I-HEDGE) that produces the optimal ranked list for conservation prioritization, taking into account complementarity and based on both phylogenetic diversity and extinction probability.

View Article and Find Full Text PDF
Article Synopsis
  • Captive breeding programs often lack genetic data, which is crucial for effective conservation strategies.
  • The study focused on Cuban Amazon parrots, assessing genetic diversity and kinship among captive populations in Cuba using advanced genetic analysis.
  • Findings revealed two genetic clusters within the Zapata population, emphasizing the need for genetic insights to enhance breeding pair recommendations and support the conservation of these vulnerable birds.
View Article and Find Full Text PDF

The global loss of biodiversity continues at an alarming rate. Genomic approaches have been suggested as a promising tool for conservation practice as scaling up to genome-wide data can improve traditional conservation genetic inferences and provide qualitatively novel insights. However, the generation of genomic data and subsequent analyses and interpretations remain challenging and largely confined to academic research in ecology and evolution.

View Article and Find Full Text PDF