In individuals with motor impairments such as those post-stroke or with cerebral palsy, the function of the knee extensors may be affected during walking, resulting in decreased mobility. We have designed a lightweight, hinge-free wearable robot combining soft textile exosuit components with integrated rigid components, which assists knee extension when needed but is otherwise highly transparent to the wearer. The exosuit can apply a wide range of assistance profiles using a flexible multi-point reference trajectory generator.
View Article and Find Full Text PDFThis paper presents a modular, computationally-distributed "multi-robot" cyberphysical system designed to assist children with developmental delays in learning to walk. The system consists of two modules, each assisting a different aspect of gait: a tethered cable pelvic module with up to 6 degrees of freedom (DOF), which can modulate the motion of the pelvis in three dimensions, and a two DOF wearable hip module assisting lower limb motion, specifically hip flexion. Both modules are designed to be lightweight and minimally restrictive to the user, and the modules can operate independently or in cooperation with each other, allowing flexible system configuration to provide highly customized and adaptable assistance.
View Article and Find Full Text PDFWe showed previously that anharmonic DNA dynamical features correlate with transcriptional activity in selected viral promoters, and hypothesized that areas of DNA softness may represent loci of functional significance. The nine known promoters from human adenovirus type 5 were analyzed for inherent DNA softness using the Peyrard-Bishop-Dauxois model and a statistical mechanics approach, using a transfer integral operator. We found a loosely defined pattern of softness peaks distributed both upstream and downstream of the transcriptional start sites, and that early transcriptional regions tended to be softer than late promoter regions.
View Article and Find Full Text PDF