The organic component (methylammonium) of CHNHPbICl-based perovskites shows electronic hybridization with the inorganic framework via H-bonding between N and I sites. Femtosecond dynamics induced by core excitation are shown to strongly influence the measured X-ray emission spectra and the resonant inelastic soft X-ray scattering of the organic components. The N core excitation leads to a greatly increased N-H bond length that modifies and strengthens the interaction with the inorganic framework compared to that in the ground state.
View Article and Find Full Text PDFThe underlying beneficial mechanism of heavy alkali postdeposition treatment (PDT) of Cu(In,Ga)Se thin-film solar cell absorbers that led to new record efficiencies in recent years is studied using photoelectron spectroscopy. Excitation energies between 40.8 eV and 6 keV were used to examine the near-surface region of Cu(In,Ga)Se thin-film solar cell absorbers that underwent NaF and combined NaF/RbF PDT.
View Article and Find Full Text PDFHalide perovskites are a strong candidate for the next generation of photovoltaics. Chemical doping of halide perovskites is an established strategy to prepare the highest efficiency and most stable perovskite-based solar cells. In this study, we unveil the doping mechanism of halide perovskites using a series of alkaline earth metals.
View Article and Find Full Text PDFThe effects of alkali postdeposition treatment (PDT) on the valence band structure of Cu(In,Ga)Se (CIGSe) thin-film solar cell absorbers are addressed from a first-principles perspective. In detail, experimentally derived hard X-ray photoelectron spectroscopy (HAXPES) data [ Handick , E. ; ACS Appl.
View Article and Find Full Text PDFA NaF/KF postdeposition treatment (PDT) has recently been employed to achieve new record efficiencies of Cu(In,Ga)Se (CIGSe) thin film solar cells. We have used a combination of depth-dependent soft and hard X-ray photoelectron spectroscopy as well as soft X-ray absorption and emission spectroscopy to gain detailed insight into the chemical structure of the CIGSe surface and how it is changed by different PDTs. Alkali-free CIGSe, NaF-PDT CIGSe, and NaF/KF-PDT CIGSe absorbers grown by low-temperature coevaporation have been interrogated.
View Article and Find Full Text PDFUsing reflection electron energy loss spectroscopy (REELS), we have investigated the optical properties at the surface of a chalcopyrite-based Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell absorber, as well as an indium sulfide (InxSy) buffer layer before and after annealing. By fitting the characteristic inelastic scattering cross-section λK(E) to cross sections evaluated by the QUEELS-ε(k,ω)-REELS software package, we determine the surface dielectric function and optical properties of these samples. A comparison of the optical values at the surface of the InxSy film with bulk ellipsometry measurements indicates a good agreement between bulk- and surface-related optical properties.
View Article and Find Full Text PDFDirect and inverse photoemission were used to study the impact of alkali fluoride postdeposition treatments on the chemical and electronic surface structure of Cu(In,Ga)Se2 (CIGSe) thin films used for high-efficiency flexible solar cells. We find a large surface band gap (E(g)(Surf), up to 2.52 eV) for a NaF/KF-postdeposition treated (PDT) absorber significantly increases compared to the CIGSe bulk band gap and to the Eg(Surf) of 1.
View Article and Find Full Text PDFWe have employed soft and hard X-ray photoelectron spectroscopies to study the depth-dependent chemical composition of mixed-halide perovskite thin films used in high-performance solar cells. We detect substantial amounts of metallic lead in the perovskite films, which correlate with significant density of states above the valence band maximum. The metallic lead content is higher in the bulk of the perovskite films than at the surface.
View Article and Find Full Text PDF