We investigated the utility of integrin-linked kinase (ILK) as a target for therapeutic intervention in multiple myeloma (MM). ILK (over-)expression was assessed in primary samples and MM cell lines, and the molecular and physiological consequences of siRNA-mediated ILK ablation were compared to treatment with the small molecule inhibitor QLT0267. Whereas ILK expression was ubiquitous, overexpression was only rarely observed in patient biopsies.
View Article and Find Full Text PDFBackground: HSP90 inhibitors effectively reduce expression and activity levels of oncogenic survival proteins. However, their clinical anti-multiple myeloma (MM) activity has been found to be rather weak, spurring the exploration of combination therapies and development of compounds with improved physicochemical properties.
Materials And Methods: Preclinical effects of the novel orally bioavailable HSP90 inhibitor NVP-HSP990 on the viability, apoptosis and client protein levels of MM cells (established cell lines and clinical specimens) were tested alone and in combination with other drugs.
The 90 kD heat shock protein (Hsp90) molecular chaperone sustains multiple components of oncogenic pathways and has recently emerged as a therapeutic target that is now being clinically tested in a number of malignancies. In order to address formulation issues and to deal with possible resistance mechanisms against small molecule Hsp90 inhibitors, a range of compounds based on different molecular scaffolds are now being developed. The present study preclinically tested the effects of the novel 2-aminothienopyrimidine class Hsp90 inhibitor NVP-BEP800, which is suitable for oral formulations, on multiple myeloma cells from established cell lines and on a larger cohort (n = 40) of primary myeloma samples.
View Article and Find Full Text PDF