Tau aggregation is a common feature of neurodegenerative diseases such as Alzheimer's disease, and hyperphosphorylation of tau has been implicated as a fundamental pathogenic mechanism in this process. To examine the impact of cdk5 in tau aggregation and tangle formation, we crossed transgenic mice overexpressing the cdk5 activator p25, with transgenic mice overexpressing mutant (P301L) human tau. Tau was hyperphosphorylated at several sites in the double transgenics, and there was a highly significant accumulation of aggregated tau in brainstem and cortex.
View Article and Find Full Text PDFBrain Res Mol Brain Res
January 2003
Recent evidence strongly suggests a role for cholesterol and apolipoprotein E in the etiology of Alzheimer's disease. We have demonstrated the co-localization of cholesterol and apolipoprotein E with beta-amyloid immunoreactivity and thioflavin S immunofluorescence in AD type plaques of a transgenic mouse model. Cholesterol and apolipoprotein E co-localized to the core of thioflavin S-positive (fibrillar) plaques, but not thioflavin S-negative (diffuse) plaques from an early age.
View Article and Find Full Text PDFPlaques containing beta-amyloid (Abeta) peptides are one of the pathological features of Alzheimer's disease, and the reduction of Abeta is considered a primary therapeutic target. Amyloid clearance by anti-Abeta antibodies has been reported after immunization, and recent data have shown that the antibodies may act as a peripheral sink for Abeta, thus altering the periphery/brain dynamics. Here we show that peripheral treatment with an agent that has high affinity for Abeta (gelsolin or GM1) but that is unrelated to an antibody or immune modulator reduced the level of Abeta in the brain, most likely because of a peripherally acting effect.
View Article and Find Full Text PDF