Publications by authors named "Evelina Busa"

Developmental neuroimaging studies report the emergence of increasingly diverse cognitive functions as closely entangled with a rise-fall modulation of cortical thickness (CTh), structural cortical and white-matter connectivity, and a time-course for the experience-dependent selective elimination of the overproduced synapses. We examine which of two visual processing networks, the dorsal (DVN; prefrontal, parietal nodes) or ventral (VVN; frontal-temporal, fusiform nodes) matures first, thus leading the neuro-cognitive developmental trajectory. Three age-dependent measures are reported: (i) the CTh at network nodes; (ii) the matrix of intra-network structural connectivity (edges); and (iii) the proficiency in network-related neuropsychological tests.

View Article and Find Full Text PDF

Objective: To determine whether preterm very low birth weight (VLBW) or term born small for gestational age (SGA) adolescents have reduced regional brain volumes. We also asked which perinatal factors are related to reduced brain volume in VLBW adolescents, which regional brain volumes are associated with cognitive and perceptual functioning, and if these differ between the groups.

Study Design: Fifty adolescent preterm VLBW (< or =1500 g) births and 49 term SGA births (birth weight <10th percentile) were compared with 57 normal-weight term births.

View Article and Find Full Text PDF

This article describes a large multi-institutional analysis of the shape and structure of the human hippocampus in the aging brain as measured via MRI. The study was conducted on a population of 101 subjects including nondemented control subjects (n = 57) and subjects clinically diagnosed with Alzheimer's Disease (AD, n = 38) or semantic dementia (n = 6) with imaging data collected at Washington University in St. Louis, hippocampal structure annotated at the Massachusetts General Hospital, and anatomical shapes embedded into a metric shape space using large deformation diffeomorphic metric mapping (LDDMM) at the Johns Hopkins University.

View Article and Find Full Text PDF

The human cerebral cortex is made up of a mosaic of structural areas, frequently referred to as Brodmann areas (BAs). Despite the widespread use of cortical folding patterns to perform ad hoc estimations of the locations of the BAs, little is understood regarding 1) how variable the position of a given BA is with respect to the folds, 2) whether the location of some BAs is more variable than others, and 3) whether the variability is related to the level of a BA in a putative cortical hierarchy. We use whole-brain histology of 10 postmortem human brains and surface-based analysis to test how well the folds predict the locations of the BAs.

View Article and Find Full Text PDF

We compared cortical folding patterns between patients with schizophrenia and demographically-matched healthy controls in prefrontal and temporal regions of interest. Using the Freesurfer (http://surfer.nmr.

View Article and Find Full Text PDF

In vivo quantification of neuroanatomical shape variations is possible due to recent advances in medical imaging and has proven useful in the study of neuropathology and neurodevelopment. In this paper, we apply a spherical wavelet transformation to extract shape features of cortical surfaces reconstructed from magnetic resonance images (MRIs) of a set of subjects. The spherical wavelet transformation can characterize the underlying functions in a local fashion in both space and frequency, in contrast to spherical harmonics that have a global basis set.

View Article and Find Full Text PDF

Due to the increasing need for subject privacy, the ability to deidentify structural MR images so that they do not provide full facial detail is desirable. A program was developed that uses models of nonbrain structures for removing potentially identifying facial features. When a novel image is presented, the optimal linear transform is computed for the input volume (Fischl et al.

View Article and Find Full Text PDF

In vivo MRI-derived measurements of human cerebral cortex thickness are providing novel insights into normal and abnormal neuroanatomy, but little is known about their reliability. We investigated how the reliability of cortical thickness measurements is affected by MRI instrument-related factors, including scanner field strength, manufacturer, upgrade and pulse sequence. Several data processing factors were also studied.

View Article and Find Full Text PDF

Background: Despite the high prevalence of specific phobia (SP), its neural substrates remain undetermined. Although an initial series of functional neuroimaging studies have implicated paralimbic and sensory cortical regions in the pathophysiology of SP, to date contemporary morphometric neuroimaging methods have not been applied to test specific hypotheses regarding structural abnormalities.

Methods: Morphometric magnetic resonance imaging (MRI) methods were used to measure regional cortical thickness in 10 subjects with SP (animal type) and 20 healthy comparison (HC) subjects.

View Article and Find Full Text PDF

The thickness of the cerebral cortex was measured in 106 non-demented participants ranging in age from 18 to 93 years. For each participant, multiple acquisitions of structural T1-weighted magnetic resonance imaging (MRI) scans were averaged to yield high-resolution, high-contrast data sets. Cortical thickness was estimated as the distance between the gray/white boundary and the outer cortical surface, resulting in a continuous estimate across the cortical mantle.

View Article and Find Full Text PDF

We present a technique for automatically assigning a neuroanatomical label to each location on a cortical surface model based on probabilistic information estimated from a manually labeled training set. This procedure incorporates both geometric information derived from the cortical model, and neuroanatomical convention, as found in the training set. The result is a complete labeling of cortical sulci and gyri.

View Article and Find Full Text PDF

Brain atrophy as determined by quantitative MRI can be used to characterize disease progression in multiple sclerosis. Many studies have addressed white matter (WM) alterations leading to atrophy, while changes of the cerebral cortex have been studied to a lesser extent. In vivo, the cerebral cortex has been difficult to study due to its complex structure and regional variability.

View Article and Find Full Text PDF

We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging.

View Article and Find Full Text PDF