An efficient implementation for approximate inclusion of the three-body operator arising in transcorrelated methods via exclusion of explicit three-body components (xTC) is presented and tested against results in the "HEAT" benchmark set [Tajti et al., J. Chem.
View Article and Find Full Text PDFWe demonstrate the accuracy of ground-state energies of the transcorrelated Hamiltonian, employing sophisticated Jastrow factors obtained from variational Monte Carlo, together with the coupled cluster and distinguishable cluster methods at the level of singles and doubles excitations. Our results show that already with the cc-pVTZ basis, the transcorrelated distinguishable cluster method gets close to the complete basis limit and near full configuration interaction quality values for relative energies of over thirty atoms and molecules. To gauge the performance in different correlation regimes, we also investigate the breaking of the nitrogen molecule with transcorrelated coupled cluster methods.
View Article and Find Full Text PDFWe present an embedded fragment approach for high-level quantum chemical calculations on local features in periodic systems. The fragment is defined as a set of localized orbitals (occupied and virtual) corresponding to a converged periodic Hartree-Fock solution. These orbitals serve as the basis for the in-fragment post-Hartree-Fock treatment.
View Article and Find Full Text PDF