GtfC-type 4,6-α-glucanotransferase (α-GT) enzymes from Glycoside Hydrolase Family 70 (GH70) are of interest for the modification of starch into low-glycemic index food ingredients. Compared to the related GH70 GtfB-type α-GTs, found exclusively in lactic acid bacteria (LAB), GtfCs occur in non-LAB, share low sequence identity, lack circular permutation of the catalytic domain, and feature a single-segment auxiliary domain IV and auxiliary C-terminal domains. Despite these differences, the first crystal structure of a GtfC, GbGtfC-ΔC from 12AMOR1, and the first one representing a non-permuted GH70 enzyme, reveals high structural similarity in the core domains with most GtfBs, featuring a similar tunneled active site.
View Article and Find Full Text PDFPolyphenols exhibit various beneficial biological activities and represent very promising candidates as active compounds for food industry. However, the low solubility, poor stability and low bioavailability of polyphenols have severely limited their industrial applications. Enzymatic glycosylation is an effective way to improve the physicochemical properties of polyphenols.
View Article and Find Full Text PDFGtfB-type α-glucanotransferase enzymes from glycoside hydrolase family 70 (GH70) convert starch substrates into α-glucans that are of interest as food ingredients with a low glycemic index. Characterization of several GtfBs showed that they differ in product- and substrate specificity, especially with regard to branching, but structural information is limited to a single GtfB, preferring mostly linear starches and featuring a tunneled binding groove. Here, we present the second crystal structure of a 4,6-α-glucanotransferase ( NCC 2613) and an improved homology model of a 4,3-α-glucanotransferase GtfB ( NCC 2970) and show that they are able to convert both linear and branched starch substrates.
View Article and Find Full Text PDFJ Agric Food Chem
September 2021
Starch-acting α-glucanotransferase enzymes are of great interest for applications in the food industry. In previous work, we have characterized various 4,6- and 4,3-α-glucanotransferases of the glycosyl hydrolase (GH) family 70 (subfamily GtfB), synthesizing linear or branched α-glucans. Thus far, GtfB enzymes have only been identified in mesophilic .
View Article and Find Full Text PDFHuman milk is considered the golden standard in infant nutrition. Free oligosaccharides in human milk provide important health benefits. These oligosaccharides function as prebiotics, immune modulators, and pathogen inhibitors and were found to improve barrier function in the gut.
View Article and Find Full Text PDFWe applied dynamic combinatorial chemistry (DCC) to find novel ligands of the bacterial virulence factor glucosyltransferase (GTF) 180. GTFs are the major producers of extracellular polysaccharides, which are important factors in the initiation and development of cariogenic dental biofilms. Following a structure-based strategy, we designed a series of 36 glucose- and maltose-based acylhydrazones as substrate mimics.
View Article and Find Full Text PDFThe adverse health effects of sucrose overconsumption, typical for diets in developed countries, necessitate use of low-calorie sweeteners. Following approval by the European Commission (2011), steviol glycosides are increasingly used as high-intensity sweeteners in food. Stevioside is the most prevalent steviol glycoside in Stevia rebaudiana plant leaves, but it has found limited applications in food products due to its lingering bitterness.
View Article and Find Full Text PDFSteviol glycosides from the leaves of the plant Stevia rebaudiana are high-potency natural sweeteners but suffer from a lingering bitterness. The Lactobacillus reuteri 180 wild-type glucansucrase Gtf180-ΔN, and in particular its Q1140E-mutant, efficiently α-glucosylated rebaudioside A (RebA), using sucrose as donor substrate. Structural analysis of the products by MALDI-TOF mass spectrometry, methylation analysis and NMR spectroscopy showed that both enzymes exclusively glucosylate the Glc(β1→C-19 residue of RebA, with the initial formation of an (α1→6) linkage.
View Article and Find Full Text PDFPreviously, we have shown that the glucansucrase GtfA-ΔN enzyme of Lactobacillus reuteri 121, incubated with sucrose, efficiently glucosylated catechol and we structurally characterized catechol glucosides with up to five glucosyl units attached (te Poele et al. in Bioconjug Chem 27:937-946, 2016). In the present study, we observed that upon prolonged incubation of GtfA-ΔN with 50 mM catechol and 1000 mM sucrose, all catechol had become completely glucosylated and then started to reappear.
View Article and Find Full Text PDFThe wild-type Gtf180-ΔN glucansucrase enzyme from Lactobacillus reuteri 180 was found to catalyze the α-glucosylation of the steviol glycoside rebaudioside A, using sucrose as glucosyl donor in a transglucosylation process. Structural analysis of the formed products by MALDI-TOF mass spectrometry, methylation analysis and NMR spectroscopy showed that rebaudioside A is specifically α-d-glucosylated at the steviol C-19 β-d-glucosyl moiety (55% conversion). The main product is a mono-(α1 → 6)-glucosylated derivative (RebA-G1).
View Article and Find Full Text PDFStevia glycosides, extracted from the leaves of the plant Stevia rebaudiana Bertoni, display an amazing high degree of sweetness. As processed plant products, they are considered as excellent bio-alternatives for sucrose and artificial sweeteners. Being noncaloric and having beneficial properties for human health, they are the subject of an increasing number of studies for applications in food and pharmacy.
View Article and Find Full Text PDFGlucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of α-glucan polysaccharides from sucrose, and this strongly impedes the efficient glycosylation of non-carbohydrate molecules and complicates downstream processing of glucosylated products. This paper reports that suppressing α-glucan synthesis by mutational engineering of the Gtf180-ΔN enzyme of Lactobacillus reuteri 180 results in the construction of more efficient glycosylation biocatalysts.
View Article and Find Full Text PDFLactic acid bacteria use glucansucrase enzymes for synthesis of gluco-oligosaccharides and polysaccharides (α-glucans) from sucrose. Depending on the glucansucrase enzyme, specific α-glucosidic linkages are introduced. GTFA-ΔN (N-terminally truncated glucosyltransferase A) is a glucansucrase enzyme of Lactobacillus reuteri 121 that synthesizes the reuteran polysaccharide with (α1 → 4) and (α1 → 6) glycosidic linkages.
View Article and Find Full Text PDFIn the present study, the use of Rhodococcus erythropolis mutant strain RG9 expressing the cytochrome P450 BM3 mutant M02 enzyme has been evaluated for whole-cell biotransformation of a 17-ketosteroid, norandrostenedione, as a model substrate. Purified P450 BM3 mutant M02 enzyme hydroxylated the steroid with >95 % regioselectivity to form 16-β-OH norandrostenedione, as confirmed by NMR analysis. Whole cells of R.
View Article and Find Full Text PDFThis paper reviews current knowledge on actinomycete integrative and conjugative elements (AICEs). The best characterised AICEs, pSAM2 of Streptomyces ambofaciens (10.9 kb), SLP1 (17.
View Article and Find Full Text PDFActinomycete integrative and conjugative elements (AICEs) are present in diverse genera of the actinomycetes, the most important bacterial producers of bioactive secondary metabolites. Comparison of pMEA100 of Amycolatopsis mediterranei, pMEA300 of Amycolatopsis methanolica and pSE211 of Saccharopolyspora erythraea, and other AICEs, revealed a highly conserved structural organisation, consisting of four functional modules (replication, excision/integration, regulation, and conjugative transfer). Features conserved in all elements, or specific for a single element, are discussed and analysed.
View Article and Find Full Text PDFThe prevalence and distribution of pMEA-like elements in the genus Amycolatopsis was studied. For this purpose, a set of 95 recently isolated Amycolatopsis strains and 16 Amycolatopsis type strains were examined for the presence of two unique pMEA-sequences (repAM and traJ), encoding proteins essential for replication and conjugative transfer. Homologues of repAM and traJ were found in 10 and 26 of 111 investigated strains, respectively, a result which shows that pMEA-like sequences, though not very abundant, can be found in several Amycolatopsis strains.
View Article and Find Full Text PDFAccessory genetic elements, such as plasmids and integrative elements, are widespread amongst actinomycetes, but little is known about their functions and mode of replication. The conjugative element pMEA300 from Amycolatopsis methanolica is present mostly in an integrated state at a single specific site in the chromosome, but it can also replicate autonomously. Complete nucleotide sequencing, in combination with deletion studies, has revealed that orfB of pMEA300 is essential for autonomous replication in its host.
View Article and Find Full Text PDFIn 1980, A. E. Walsby described a square halophilic archaeon.
View Article and Find Full Text PDF