Multiple genotypes of highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.
View Article and Find Full Text PDFHighly pathogenic avian influenza (HPAI) H5-viruses are circulating in wild birds and are repeatedly introduced to poultry causing outbreaks in the Netherlands since 2014. The largest epizootic ever recorded in Europe was caused by HPAI H5N1 clade 2.3.
View Article and Find Full Text PDFWild carnivore species infected with highly pathogenic avian influenza (HPAI) virus subtype H5N1 during the 2021-2022 outbreak in the Netherlands included red fox (), polecat (), otter (), and badger (). Most of the animals were submitted for testing because they showed neurological signs. In this study, the HPAI H5N1 virus was detected by PCR and/or immunohistochemistry in 11 animals and was primarily present in brain tissue, often associated with a (meningo) encephalitis in the cerebrum.
View Article and Find Full Text PDFDuring the 2020 to 2022 epizootic of highly pathogenic avian influenza virus (HPAI), several infections of mammalian species were reported in Europe. In the Netherlands, HPAI H5N1 virus infections were detected in three wild red foxes (Vulpes vulpes) that were submitted with neurological symptoms between December of 2021 and February of 2022. A histopathological analysis demonstrated that the virus was mainly present in the brain, with limited or no detection in the respiratory tract or other organs.
View Article and Find Full Text PDFWind-supported transport of particle matter (PM) contaminated with excreta from highly pathogenic avian influenza virus (HPAIv)-infected wild birds may be a HPAIv-introduction pathway, which may explain infections in indoor-housed poultry. The primary objective of our study was therefore to measure the nature and quantity of PM entering poultry houses via air-inlets. The air-inlets of two recently HPAIv-infected poultry farms (a broiler farm and a layer farm) were equipped with mosquito-net collection bags.
View Article and Find Full Text PDFHighly pathogenic avian influenza (HPAI) viruses of subtype H5Nx caused outbreaks in poultry, captive birds, and wild birds in the Netherlands between October 2020 and June 2021. The full genome sequences of 143 viruses were analyzed. HPAI viruses were mainly of subtype H5N8, followed by H5N1, but also viruses of subtypes H5N3, H5N4, and H5N5 were detected.
View Article and Find Full Text PDFHighly pathogenic avian influenza (HPAI) outbreaks have become increasingly frequent in wild bird populations and have caused mass mortality in many wild bird species. The 2020/2021 epizootic was the largest and most deadly ever reported in Europe, and many new bird species tested positive for HPAI virus for the first time. This study investigated the tropism of HPAI virus in wild birds.
View Article and Find Full Text PDFHighly pathogenic avian influenza A(H5N8) virus was detected in mute swans in the Netherlands during October 2020. The virus shares a common ancestor with clade 2.3.
View Article and Find Full Text PDFStrategies to control spread of highly pathogenic avian influenza (HPAI) viruses by wild birds appear limited, hence timely characterization of novel viruses is important to mitigate the risk for the poultry sector and human health. In this study we characterize three recent H5-clade 2.3.
View Article and Find Full Text PDFWild birds are the natural reservoir of the avian influenza virus (AIV) and may transmit AIV to poultry via direct contact or indirectly through the environment. In the Netherlands, a clinically suspected free-range layer flock was reported to the veterinary authorities by the farmer. Increased mortality, a decreased feed intake, and a drop in egg production were observed.
View Article and Find Full Text PDFAnalysis of low pathogenic avian influenza (LPAI) viruses circulating in the Netherlands in a previous study revealed associations of specific hemagglutinin (HA) and neuraminidase (NA) subtypes with wild bird or poultry hosts. In this study, we identified putative host associations in LPAI virus internal proteins. We show that LPAI viruses isolated from poultry more frequently carried the allele A variant of the nonstructural protein (NS) gene, compared to wild bird viruses.
View Article and Find Full Text PDFUnderstanding virus shedding patterns of avian influenza virus (AIV) in poultry is important for understanding host-pathogen interactions and developing effective control strategies. Many AIV strains were studied in challenge experiments in poultry, but no study has combined data from those studies to identify general AIV shedding patterns. These systematic review and meta-analysis were performed to summarize qualitative and quantitative information on virus shedding levels and duration for different AIV strains in experimentally infected poultry species.
View Article and Find Full Text PDFAvian influenza (AI) is an infectious disease in birds with enormous impact on the poultry sector. AI viruses are divided into different subtypes based on the antigenicity of their surface proteins haemagglutinin (HA) and neuraminidases (NA). In birds, 16 HA subtypes and 9 NA subtypes are detected in different combinations.
View Article and Find Full Text PDF