Publications by authors named "Evelien De Waelheyns"

The rapid rise of antibiotic-resistant bacteria is one of the major concerns in modern medicine. Therefore, to treat bacterial infections, there is an urgent need for new antibacterials-preferably directed against alternative bacterial targets. One such potential target is the preprotein translocation motor SecA.

View Article and Find Full Text PDF

Finding new, effective antibiotics is a challenging research area driven by novel approaches required to tackle unconventional targets. In this review we focus on the bacterial protein secretion pathway as a target for eliminating or disarming pathogens. We discuss the latest developments in targeting the Sec-pathway for novel antibiotics focusing on two key components: SecA, the ATP-driven motor protein responsible for driving preproteins across the cytoplasmic membrane and the Type I signal peptidase that is responsible for the removal of the signal peptide allowing the release of the mature protein from the membrane.

View Article and Find Full Text PDF

Implant-related infections are a serious complication in prosthetic surgery, substantially jeopardizing implant fixation. As porous coatings for improved osseointegration typically present an increased surface roughness, their resulting large surface area (sometimes increasing with over 700% compared to an ideal plane) renders the implant extremely susceptible to bacterial colonization and subsequent biofilm formation. Therefore, there is particular interest in orthopaedic implantology to engineer surfaces that combine both the ability to improve osseointegration and at the same time reduce the infection risk.

View Article and Find Full Text PDF

Titanium-based implants are widely used in modern clinical practice; however, complications associated with implants due to bacterial-induced infections arise frequently, caused mainly by staphylococci, streptococci, Pseudomonas spp. and coliform bacteria. Although increased hydrophilicity of the biomaterial surface is known to be beneficial in minimizing the biofilm, quantitative analyses between the actual implant parameters and bacterial development are scarce.

View Article and Find Full Text PDF