Publications by authors named "Eve Merriman"

The toxicity of mistranslation of serine for alanine appears to be universal, and is prevented in part by the editing activities of alanyl-tRNA synthetases (AlaRSs), which remove serine from mischarged tRNA(Ala). The problem of serine mistranslation is so acute that free-standing, genome-encoded fragments of the editing domain of AlaRSs are found throughout evolution. These AlaXps are thought to provide functional redundancy of editing.

View Article and Find Full Text PDF

Synthesis of proteins containing errors (mistranslation) is prevented by aminoacyl transfer RNA synthetases through their accurate aminoacylation of cognate tRNAs and their ability to correct occasional errors of aminoacylation by editing reactions. A principal source of mistranslation comes from mistaking glycine or serine for alanine, which can lead to serious cell and animal pathologies, including neurodegeneration. A single specific G.

View Article and Find Full Text PDF

The rules of the genetic code are established by aminoacylations of transfer RNAs by aminoacyl tRNA synthetases. New codon assignments, and the introduction of new kinds of amino acids, are blocked by vigorous tRNA-dependent editing reactions occurring at hydrolytic sites embedded within specialized domains in the synthetases. For some synthetases, these domains were present at the time of the last common ancestor and were fixed in evolution through all three of the kingdoms of life.

View Article and Find Full Text PDF

Alanyl-tRNA synthetase efficiently aminoacylates tRNAAla and an RNA minihelix that comprises just one domain of the two-domain L-shaped tRNA structure. It also clears mischarged tRNAAla using a specialized domain in its C-terminal half. In contrast to full-length tRNAAla, minihelixAla was robustly mischarged and could not be edited.

View Article and Find Full Text PDF