Philos Trans A Math Phys Eng Sci
July 2022
Implantable electronic neural interfaces typically take the form of probes and are made with rigid materials such as silicon and metals. These have advantages such as compatibility with integrated microchips, simple implantation and high-density nanofabrication but tend to be lacking in terms of biointegration, biocompatibility and durability due to their mechanical rigidity. This leads to damage to the device or, more importantly, the brain tissue surrounding the implant.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2022
Careful design and material selection are the most beneficial strategies to ensure successful implantation and mitigate the failure of a neural probe in the long term. In order to realize a fully flexible implantable system, the probe should be easily manipulated by neuroscientists, with the potential to bend up to 90°. This paper investigates the impact of material choice, probe geometry, and crucially, implantation angle on implantation success through finite-element method simulations in followed by cleanroom microfabrication.
View Article and Find Full Text PDFNeuromodulation is of great importance both as a fundamental neuroscience research tool for analyzing and understanding the brain function, and as a therapeutic avenue for treating brain disorders. Here, an overview of conceptual and technical progress in developing neuromodulation strategies is provided, and it is suggested that recent advances in nanotechnology are enabling novel neuromodulation modalities with less invasiveness, improved biointerfaces, deeper penetration, and higher spatiotemporal precision. The use of nanotechnology and the employment of versatile nanomaterials and nanoscale devices with tailored physical properties have led to considerable research progress.
View Article and Find Full Text PDFNeurological diseases are a prevalent cause of global mortality and are of growing concern when considering an ageing global population. Traditional treatments are accompanied by serious side effects including repeated treatment sessions, invasive surgeries, or infections. For example, in the case of deep brain stimulation, large, stiff, and battery powered neural probes recruit thousands of neurons with each pulse, and can invoke a vigorous immune response.
View Article and Find Full Text PDF