Publications by authors named "Evdoxia Kakani"

Background: Incompatible insect technique (IIT) coupled with sterile insect technique (SIT) via the release of sterile male Wolbachia-infected mosquitoes is a promising tool for Aedes-borne disease control. Yet, real-world evidence on the suppressive effectiveness of IIT-SIT on mosquito abundance remains mostly limited to small semi-rural village and suburban localities over short trial durations. However, a large proportion of Aedes-borne diseases occur in dense, urban, and high-rise locations, limiting the applicability of previous studies for these settings with high disease burden.

View Article and Find Full Text PDF

Insects, unlike vertebrates, are widely believed to lack male-biased sex steroid hormones. In the malaria mosquito Anopheles gambiae, the ecdysteroid 20-hydroxyecdysone (20E) appears to have evolved to both control egg development when synthesized by females and to induce mating refractoriness when sexually transferred by males. Because egg development and mating are essential reproductive traits, understanding how Anopheles females integrate these hormonal signals can spur the design of new malaria control programs.

View Article and Find Full Text PDF

In most diploid organisms, mating is a prerequisite for reproduction and, thus, critical to the maintenance of their population and the perpetuation of the species. Besides the importance of understanding the fundamentals of reproduction, targeting the reproductive success of a pest insect is also a promising method for its control, as a possible manipulation of the reproductive system could affect its destructive activity. Here, we used an integrated approach for the elucidation of the reproductive system and mating procedures of the olive fruit fly, .

View Article and Find Full Text PDF

Anopheles mosquitoes have transmitted Plasmodium parasites for millions of years, yet it remains unclear whether they suffer fitness costs to infection. Here we report that the fecundity of virgin and mated females of two important vectors-Anopheles gambiae and Anopheles stephensi-is not affected by infection with Plasmodium falciparum, demonstrating that these human malaria parasites do not inflict this reproductive cost on their natural mosquito hosts. Additionally, parasite development is not impacted by mating status.

View Article and Find Full Text PDF

The reproductive fitness of the Anopheles gambiae mosquito represents a promising target to prevent malaria transmission. The ecdysteroid hormone 20-hydroxyecdysone (20E), transferred from male to female during copulation, is key to An. gambiae reproductive success as it licenses females to oviposit eggs developed after blood feeding.

View Article and Find Full Text PDF

The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California.

View Article and Find Full Text PDF

The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria.

View Article and Find Full Text PDF

The availability of genome sequences from 16 anopheline species provides unprecedented opportunities to study the evolution of reproductive traits relevant for malaria transmission. In Anopheles gambiae, a likely candidate for sexual selection is male 20-hydroxyecdysone (20E). Sexual transfer of this steroid hormone as part of a mating plug dramatically changes female physiological processes intimately tied to vectorial capacity.

View Article and Find Full Text PDF

Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila.

View Article and Find Full Text PDF

Introgressive hybridization is now recognized as a widespread phenomenon, but its role in evolution remains contested. Here, we use newly available reference genome assemblies to investigate phylogenetic relationships and introgression in a medically important group of Afrotropical mosquito sibling species. We have identified the correct species branching order to resolve a contentious phylogeny and show that lineages leading to the principal vectors of human malaria were among the first to split.

View Article and Find Full Text PDF

Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding.

View Article and Find Full Text PDF

Background: Current vector-based malaria control strategies are threatened by the rise of biochemical and behavioural resistance in mosquitoes. Researching mosquito traits of immunity and fertility is required to find potential targets for new vector control strategies. The seminal transglutaminase AgTG3 coagulates male Anopheles gambiae seminal fluids, forming a 'mating plug' that is required for male reproductive success.

View Article and Find Full Text PDF

Background: The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), is the most important pest of olives. Its control is based mostly on organophosphate (OP) insecticides, a practice that has led to resistance development. OP resistance in B.

View Article and Find Full Text PDF

The olive fruit fly Bactrocera oleae is the most destructive and intractable pest of olives. The management of B. oleae has been based on the use of organophosphate (OP) insecticides, a practice that induced resistance.

View Article and Find Full Text PDF

Background: Among target pests of the insecticide spinosad is the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). In Cyprus, spinosad has been sporadically used since its registration in 2002, whereas in Greece its use has been very limited since its registration in 2004, particularly in biological olive cultivars in Crete. By contrast, in California it has been the only insecticide used against the olive fruit fly since its registration in 2004.

View Article and Find Full Text PDF

Background: The Tephritidae family of insects includes the most important agricultural pests of fruits and vegetables, belonging mainly to four genera (Bactrocera, Ceratitis, Anastrepha and Rhagoletis). The olive fruit fly, Bactrocera oleae, is the major pest of the olive fruit. Currently, its control is based on chemical insecticides.

View Article and Find Full Text PDF