Publications by authors named "Evangelos I Sfakianakis"

We investigate a generic source of stochastic gravitational wave background due to the parametric resonance of oscillating scalar fields in the early Universe. By systematically analyzing benchmark models through lattice simulations and considering a wide range of parameters, we demonstrate that such a scenario can lead to detectable signals in gravitational wave detectors over a broad frequency range and potentially address the recent findings by pulsar timing array experiments. Furthermore, these models naturally yield ultralight dark matter candidates or dark radiation detectable by cosmic microwave background observatories.

View Article and Find Full Text PDF

We study the postinflation dynamics of multifield models involving nonminimal couplings using lattice simulations to capture significant nonlinear effects like backreaction and rescattering. We measure the effective equation of state and typical timescales for the onset of thermalization, which could affect the usual mapping between predictions for primordial perturbation spectra and measurements of anisotropies in the cosmic microwave background radiation. For large values of the nonminimal coupling constants, we find efficient particle production that gives rise to nearly instantaneous preheating.

View Article and Find Full Text PDF

We propose that the observed matter-antimatter asymmetry can be naturally produced as a by-product of axion-driven slow-roll inflation by coupling the axion to standard model neutrinos. We assume that grand unified theory scale right-handed neutrinos are responsible for the masses of the standard model neutrinos and that the Higgs field is light during inflation and develops a Hubble-scale root-mean-square value. In this setup, the rolling axion generates a helicity asymmetry in standard model neutrinos.

View Article and Find Full Text PDF

Multifield models of inflation with nonminimal couplings are in excellent agreement with the recent results from Planck. Across a broad range of couplings and initial conditions, such models evolve along an effectively single-field attractor solution and predict values of the primordial spectral index and its running, the tensor-to-scalar ratio, and non-Gaussianities squarely in the observationally most-favored region. Such models can also amplify isocurvature perturbations, which could account for the low power recently observed in the cosmic microwave background power spectrum at low multipoles.

View Article and Find Full Text PDF