IEEE Trans Neural Syst Rehabil Eng
October 2023
There is a need to develop appropriate balance training interventions to minimize the risk of falls. Recently, we found that intermittent visual occlusions can substantially improve the effectiveness and retention of balance beam walking practice (Symeonidou & Ferris, 2022). We sought to determine how the intermittent visual occlusions affect electrocortical activity during beam walking.
View Article and Find Full Text PDFThe goals of this study were to determine if a single 30-minute session of practice walking on a treadmill mounted balance beam: 1) altered sacral marker movement kinematics during beam walking, and 2) affected measures of balance during treadmill walking and standing balance. Two groups of young, healthy human subjects practiced walking on a treadmill mounted balance beam for thirty minutes. One group trained with intermittent visual occlusions and the other group trained with unperturbed vision.
View Article and Find Full Text PDFFront Hum Neurosci
April 2022
Improving dynamic balance can prevent falls in humans with neurological and mechanical deficits. Dynamic balance requires the neural integration of multisensory information to constantly assess the state of body mechanics. Prior research found that intermittent visual rotations improved balance training during walking on a narrow beam, but limitations from the immersive virtual reality headset hindered balance training effectiveness overall.
View Article and Find Full Text PDFMore neuroscience researchers are using scalp electroencephalography (EEG) to measure electrocortical dynamics during human locomotion and other types of movement. Motion artifacts corrupt the EEG and mask underlying neural signals of interest. The cause of motion artifacts in EEG is often attributed to electrode motion relative to the skin, but few studies have examined EEG signals under head motion.
View Article and Find Full Text PDFPost-traumatic sleep-wake disturbances are common after acute traumatic brain injury. Increased sleep need per 24 h and excessive daytime sleepiness are among the most prevalent post-traumatic sleep disorders and impair quality of life of trauma patients. Nevertheless, the relation between traumatic brain injury and sleep outcome, but also the link between post-traumatic sleep problems and clinical measures in the acute phase after traumatic brain injury has so far not been addressed in a controlled and prospective approach.
View Article and Find Full Text PDF