Background: The outbreak of the COVID-19 pandemic seems to have mental health implications for both people with neurocognitive disorder and their caregivers.
Objective: The study aimed to shed light on relations between caregiver mental reaction to the pandemic and caregiver distress related to neuropsychiatric symptoms, memory impairment progression, and functional impairment of people with neurocognitive disorder during the period of confinement in Greece.
Methods: The study included caregivers of patients with mild (N = 13) and major (N = 54) neurocognitive disorder.
Background: Neuroinflammation, impaired brain insulin signaling, and neuronal apoptosis may be interrelated in the pathophysiology of people with Alzheimer disease (AD) and diabetes, either type 1 or 2 diabetes (T1D or T2D, respectively).
Methods: We studied 116 patients: 41 with AD, 20 with T1D, 21 with T2D, and 34 healthy controls. The number (n) of cytokine-secreting peripheral blood mononuclear cells (PBMCs) before and after mitogenic stimulation was determined for interleukin 1β (IL1β), interleukin 6 (IL6), tumor necrosis factor (TNF) by the enzyme-linked-immuno-spot assay.
Background: Clinical and preclinical studies firmly support the involvement of the inflammation in the pathogenesis of Alzheimer's disease (AD). Despite acetylcholinesterase inhibitors (AChEI) being widely used in AD patients, there is no conclusive evidence about their impact on the inflammatory response.
Methods: This study investigates peripheral proinflammatory cytokines (interferon gamma [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukins 1β [IL-1β] and 6 [IL-6]) by firstly comparing peripheral blood mononuclear cell (PBMC)-derived secretion in drug-naïve and AChEI-treated AD patients versus healthy controls.
Among the several genes associated with late-onset Alzheimer's disease (LOAD), recently, Sirtuin genes have roused a growing interest because of their involvement in metabolic homeostasis and in brain aging. Particularly SIRT2 gene has been associated with Alzheimer's disease (AD) as well as with mood disorders. The aim of this study is to investigate the possible associations between Sirtuin 2 gene (SIRT2) rs10410544 polymorphism and AD as well as depression in AD.
View Article and Find Full Text PDFIt was suggested that the gene encoding for sorLa, (SORL1) may affect Alzheimer's disease (LOAD) through a female-specific mechanism. The aims of this study were to confirm the role of gender in modulating the association between SORL1 and LOAD and to ascertain the influence of SORL1 on cognitive impairment, neuropsychiatric symptoms (BPSD) and secretion of pro-inflammatory cytokines. Ninety six outpatients with LOAD and 120 unrelated controls were genotyped for APOE and three SNPs at the 5' end of SORL1(intron 6): SNP 8 (rs668387); SNP 9 (rs68902); SNP 10 (rs641120).
View Article and Find Full Text PDFThe pathophysiology of Alzheimer's disease (AD) is influenced by sorting-protein related receptor (sorLa) that is less expressed in AD patients. The gene encoding sorLa (SORL1) has been investigated as a susceptibility factor for late-onset AD (LOAD) with conflicting results. Our objectives were to confirm the association between SORL1 SNPs and LOAD in two independent South-European centers and to perform a mega-analysis of published samples.
View Article and Find Full Text PDFAlzheimer's disease (AD) has been associated with up-regulation of pro-inflammatory cytokines (e.g., specific gene variants for TNF-alpha; IL-6; IFN-gamma) and low plasma levels of cyanocobalamin (vitamin B12).
View Article and Find Full Text PDFInt J Geriatr Psychiatry
April 2010
Objective: The APOE epsilon-4 allele has consistently emerged as a susceptibility factor for Alzheimer's disease (AD). Pro-inflammatory cytokines are detectable at abnormal levels in AD, and are thought to play a pathophysiological role. Animal studies have shown dose-dependent correlations between the number of APOE epsilon-4 alleles and the levels of pro-inflammatory cytokines.
View Article and Find Full Text PDFInterleukin-1 (IL1) can contribute to pathophysiology of Alzheimer's disease (AD) by promoting deposition of amyloid-beta in the brain. The gene encoding IL1 alpha (IL1A) has a common polymorphism in its 5' regulatory region (rs1800587) with possible functional effects. IL1A T/T genotype has been associated with AD but the overall effect is modest and negative studies have been published.
View Article and Find Full Text PDF