Publications by authors named "Evangelia D Kouri"

Lytic bacteriophages have been well documented to play a pivotal role in microbial ecology due to their complex interactions with bacterial species, especially in aquatic habitats. Although the use of phages as antimicrobial agents, known as phage therapy, in the aquatic environment has been increasing, recent research has revealed drawbacks due to the development of phage-resistant strains among Gram-negative species. Acquired phage resistance in marine has been proven to be a very complicated process utilizing biochemical, metabolic, and molecular adaptation strategies.

View Article and Find Full Text PDF

Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting.

View Article and Find Full Text PDF

Background: MADS-box genes constitute a large family of transcription factors functioning as key regulators of many processes during plant vegetative and reproductive development. Type II MADS-box genes have been intensively investigated and are mostly involved in vegetative and flowering development. A growing number of studies of Type I MADS-box genes in Arabidopsis, have assigned crucial roles for these genes in gamete and seed development and have demonstrated that a number of Type I MADS-box genes are epigenetically regulated by DNA methylation and histone modifications.

View Article and Find Full Text PDF

The soil nitrogen-fixing bacterium Azotobacter vinelandii possesses two cyclophilins, comprising putative cytoplasmic and periplasmic isoforms, designated as AvPPIB and AvPPIA, respectively. Both recombinant cyclophilins have been purified and their peptidyl-prolyl cis/trans isomerase activity against Suc-Ala-Xaa-Pro-Phe-pNA synthetic peptides has been characterized. The substrate specificity of both cyclophilins is typical for bacterial cyclophilins, with Suc-Ala-Ala-Pro-Phe-pNA being the most rapidly catalyzed substrate.

View Article and Find Full Text PDF

Polyols are compounds that play various physiological roles in plants. Here we present the identification of four cDNA clones of the model legume Lotus japonicus, encoding proteins of the monosaccharide transporter-like (MST) superfamily that share significant homology with previously characterized polyol transporters (PLTs). One of the transporters, named LjPLT4, was characterized functionally after expression in yeast.

View Article and Find Full Text PDF

The cis/trans isomerization of the peptide bond preceding proline is an intrinsically slow process, although important in many biological processes in both prokaryotes and eukaryotes. In vivo, this isomerization is catalyzed by peptidyl-prolyl cis/trans-isomerases (PPIases). Here, we present the molecular and biochemical characterization of parvulin-type PPIase family members of the model legume Lotus japonicus, annotated as LjPar1, LjPar2, and LjPar3.

View Article and Find Full Text PDF