Alzheimer's disease (AD) is marked by extracellular beta-amyloid (Aβ) plaques and intracellular Tau tangles, leading to progressive cognitive decline and neuronal dysfunction. Impaired autophagy, a process by which a cell breaks down and destroys damaged or abnormal proteins and other substances, contributes to AD progression. This study investigated Nuclear Receptor Subfamily 1 Group D Member 1 (NR1D1) as a potential therapeutic target for modulating autophagy.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (oxidized form, NAD) serves as a co-substrate and co-enzyme in cells to execute its key roles in cell signalling pathways and energetic metabolism, arbitrating cell survival and death. It was discovered in 1906 by Arthur Harden and William John Young in yeast extract which could accelerate alcohol fermentation. NAD acts as an electron acceptor and cofactor throughout the processes of glycolysis, Tricarboxylic Acid Cycle (TCA), β oxidation, and oxidative phosphorylation (OXPHOS).
View Article and Find Full Text PDFHere, we present a NAD/NADH detection assay for evaluating NAD, NADH, and NAD/NADH ratio across diverse biological models, including Caenorhabditis elegans, mouse muscle tissue, mouse whole blood, and human whole blood. We describe steps for sample collection and preparation from different models as well as detection and calculation of NAD and NADH levels. This protocol is applicable for quantifying cellular/tissue NAD and NADH levels across different biological models.
View Article and Find Full Text PDFBackground: Sex differences in neuroinflammation could contribute to women's increased risk of Alzheimer's disease (AD), providing rationale for exploring sex-specific AD biomarkers. In AD, dysregulation of the kynurenine pathway (KP) contributes to neuroinflammation and there is some evidence of sex differences in KP metabolism. However, the sex-specific associations between KP metabolism and biomarkers of AD and neuroinflammation need to be explored further.
View Article and Find Full Text PDFUnhealthy aging poses a global challenge with profound healthcare and socioeconomic implications. Slowing down the aging process offers a promising approach to reduce the burden of a number of age-related diseases, such as dementia, and promoting healthy longevity in the old population. In response to the challenge of the aging population and with a view to the future, Norway and the United Kingdom are fostering collaborations, supported by a "Money Follows Cooperation agreement" between the 2 nations.
View Article and Find Full Text PDFBackground: Metabolic dysfunction is one of the main symptoms of Werner syndrome (WS); however, the underlying mechanisms remain unclear. Here, we report that loss of WRN accelerates adipogenesis at an early stage both in vitro (stem cells) and in vivo (zebrafish). Moreover, WRN depletion causes a transient upregulation of late-stage of adipocyte-specific genes at an early stage.
View Article and Find Full Text PDFBackground: Supplementation of nicotinamide riboside (NR) ameliorates neuropathology in animal models of ataxia telangiectasia (A-T). In humans, short-term NR supplementation showed benefits in neurological outcome.
Objectives: The study aimed to investigate the safety and benefits of long-term NR supplementation in individuals with A-T.
As aging and tumorigenesis are tightly interconnected biological processes, targeting their common underlying driving pathways may induce dual-purpose anti-aging and anti-cancer effects. Our transcriptomic analyses of 16,740 healthy samples demonstrated tissue-specific age-associated gene expression, with most tumor suppressor genes downregulated during aging. Furthermore, a large-scale pan-cancer analysis of 11 solid tumor types (11,303 cases and 4431 control samples) revealed that many cellular processes, such as protein localization, DNA replication, DNA repair, cell cycle, and RNA metabolism, were upregulated in cancer but downregulated in healthy aging tissues, whereas pathways regulating cellular senescence were upregulated in both aging and cancer.
View Article and Find Full Text PDFDifferent dopaminergic (DA) neuronal subgroups exhibit distinct vulnerability to stress, while the underlying mechanisms are elusive. Here we report that the transient receptor potential melastatin 2 (TRPM2) channel is preferentially expressed in vulnerable DA neuronal subgroups, which correlates positively with aging in Parkinson's Disease (PD) patients. Overexpression of human TRPM2 in the DA neurons of C.
View Article and Find Full Text PDFMaintaining mitochondrial homeostasis is a potential therapeutic strategy for various diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic disorders, and cancer. Selective degradation of mitochondria by autophagy (mitophagy) is a fundamental mitochondrial quality control mechanism conserved from yeast to humans. Indeed, small-molecule modulators of mitophagy are valuable pharmaceutical tools that can be used to dissect complex biological processes and turn them into potential drugs.
View Article and Find Full Text PDFIntroduction: The kynurenine pathway's (KP) malfunction is closely related to Alzheimer's disease (AD), for antagonistic kynurenic acid (KA) and agonistic quinolinic acid act on the N-methyl-D-aspartate receptor, a possible therapeutic target in treating AD.
Methods: In our longitudinal case-control study, KP metabolites in the cerebrospinal fluid were analyzed in 311 patients with AD and 105 cognitively unimpaired controls.
Results: Patients with AD exhibited higher concentrations of KA (β = 0.